SOIL MAPS OF CADMIUM IN NEW ZEALAND

Matthew Taylor, Robert Gibb, Janice Willoughby, Allan Hewitt and Greg Arnold

Landcare Research Private Bag, 3127 Hamilton New Zealand

Landcare Research Contract Report:

PREPARED FOR: Ministry of Agriculture & Forestry: P O Box 2526, Wellington

DATE: June 2007

Reviewed by:

Landcare Research

Approved for release by: Dr Alison Collins Soils and Landscape Responses

Disclaimer

The findings in this report are specific to this project. Landcare Research and the Ministry of Agriculture and Forestry accepts no responsibility where information in the report is used for any other purpose, and will not be liable for any loss or damage suffered as a result of such other use.

Contents

SU	SUMMARY					
1.	INTRODUCTION	9				
2.	METHODS	9				
NA	FIONAL AND REGIONAL CADMIUM LEVELS IN TOPSOIL.	9				
2.2	DATABASE ANALYSIS	11				
2.3	PREDICTING FUTURE CADMIUM LEVELS	11				
2.4	A NATIONALLY CONSISTENT SAMPLING AND ANALYSIS SCHEME	12				
3.	RESULTS AND DISCUSSION	13				
3.1	NATIONAL AND REGIONAL TOPSOIL TOTAL-CADMIUM SOIL LEVELS	13				
3.2	BACKGROUND LEVELS OF CADMIUM IN NEW ZEALAND	31				
3.3	CURRENT LEVELS OF CADMIUM IN NEW ZEALAND	32				
3.4	REPRESENTIVENESS OF THE DATA	36				
3.5	FUTURE LEVELS OF CADMIUM IN NEW ZEALAND	39				
3.6	DISCUSSION ON BULK DENSITY AFFECTS ON SOIL CADMIUM LEVELS	48				
3.7	A NATIONAL SAMPLING AND ANALYSIS SCHEME	50				
4.	CONCLUSIONS	51				
5.	SPECIFIC RECOMMENDATIONS	53				
6.	GENERAL RECOMMENDATIONS	53				
7.	ACKNOWLEDGEMENTS	54				
8.	REFERENCES	54				

Summary

Project and Client

The Ministry of Agriculture & Forestry engaged Landcare Research Ltd to establish a GIS-based system providing national coverage of a cadmium baseline, current levels with the option of establishing future levels.

Objectives

- 1. In a pilot study in Waikato, Wellington and Canterbury, assess sample density, variability, and drivers of landscape-scale variation of topsoil total cadmium from existing data collated by Environment Waikato, Greater Wellington and Environment Canterbury. Produce three regional topsoil total-cadmium soil maps for soil types represented in these regions using Landcare Research data for verification. To be completed by 30 June 2006.
- 2. Extend the pilot study in Objective 1 to a national study for both background and current total cadmium by collating existing data from all further sources of data identified in the Statement of Interest "Establishing Cadmium levels in New Zealand". Use the new data to refine the understanding of drivers of landscape scale variation. Identify where data are lacking and the relative need to reduce uncertainty in different landscapes. To be completed by 30 June 2007.
- 3. Design a nationally consistent sampling and analysis scheme. To be completed by 30 June 2007.

Methods

Current data sources of cadmium data were identified with the help of MAF. Samples were topsoils of varying depth to a maximum of 20 cm. Most samples were 0 to 10 or 0 to 7.5 cm depth. The average sample depths for background, pastoral, cropping and horticultural soil samples were 10.0, 9.4, 14 and 13 cm respectively. Cropping and horticultural soils are regularly mixed due to cultivation, while pastoral and background soils often are not cultivated. They were mainly collected at two time periods 1989–1995 and 2000 to the present, and the results presented here may underestimate the real situation. Sampling strategy and protocol varied with the purpose of sample collection. Same samples were for specific experiments while others were for regional or national survey. Testing for cadmium was either by strong acid extraction of the soil followed by spectrophotographic analysis or by x-ray fluorescence spectrophotometry of the whole soil. Some samples had associated grid references suitable for plotting on maps while others only had regional location data. Other samples included landuse data but were not georeferenced. Samples from sites of known cadmium contamination were not included in the database analysis. Where possible, the largest set of samples was used for analysis.

Data and metadata additional to that used in the pilot study of Objective 1 were collated and entered in the database (developed in Objective 1). Relationships between possible drivers of variation such as soil group, land use, vegetation, climate, regional fertiliser use, etc., were investigated. Cadmium spatial data layers were generated by developing the relationships explored in Objective 1 and applying them to the enlarged cadmium dataset and the soil polygons in the Fundamental Soils Layer.

The Fertiliser Manufacturers Research Association (FMRA) CadBal model for predicting cadmium concentrations in soils was used to forward project total cadmium levels.

A nationally consistent sampling and analysis scheme is detailed.

Results

Data from a total of 1794 dried topsoil samples were collated. Of these, 1649 were georeferenced and used to derive the maps. Samples were mainly collected at two time periods 1989–1995 and 2000 to the present, and the results presented here may underestimate the real situation. A selection of 372 of these samples from sites with land-uses reserve, tussock, bush, indigenous forest and plantation forestry were used to derive background levels of cadmium in New Zealand topsoils. These data show a national average baseline value of 0.16 μ g g⁻¹, similar to that found for non-farmed soils (0.20 μ g g⁻¹, Roberts et al. 1994), and baseline cadmium was consistent across all regions and soil types. No national map was produced for background topsoil cadmium concentrations as it would be monochromatic.

A national map of current topsoil cadmium concentrations was produced. The national average concentration for cadmium was 0.35 with a range of 0-2.52 μ g g⁻¹. An attempt to estimate the historic accumulation rate was thwarted by lack of data on fertiliser history.

Land-use was a key driver of topsoil cadmium concentrations. Cropping, pasture and horticulture land-uses all had higher concentrations of cadmium in soil than background land-use. Dairying has the highest national average for cadmium concentration $(0.73 \ \mu g^{-1})$ and had showed the largest number of data points outside the 95 and 5 percentiles for the pasture landuse, reflecting the wide range of cadmium values measured. Kiwifruit $(0.71 \ \mu g^{-1})$, berries $(0.68 \ \mu g^{-1})$, orchards $(0.66 \ \mu g^{-1})$, market gardening $(0.46 \ \mu g^{-1})$, drystock pasture $(0.40 \ \mu g^{-1})$ were also above the national average. Cropped soils appear to be mostly below the national average of $0.35 \ \mu g^{-1}$ for cadmium; however, these soils are tilled to a greater depth (200 mm) than other land-uses, and dilution decreases the cadmium concentration. Soils where tobacco was grown were more elevated in cadmium $(0.34 \ \mu g^{-1})$ than other cropping soils. These soils will now have other land-uses as tobacco is no longer grown in New Zealand. Sites receiving little or no fertiliser had the lowest cadmium concentrations (unfertilised 0.19 \ \mu g^{-1}, plantation forestry 0.14 \ \mu g^{-1}, native forest 0.10 \ \mu g^{-1}).

The data in the database was tested for representativeness by comparing topsoil total-cadmium concentrations and associated metadata with LCDB2 vegetation class and the number of sites per 100 square km calculated. Depleted tussock grassland, tall tussock grassland and sub-alpine shrubland are relatively poorly represented with the number of sites per 100 square km less than 0.04.

Data on topsoil total-cadmium levels and associated metadata were tabulated according to region and the number of sites per region calculated. The region with the highest average cadmium concentration was Taranaki (0.69 μ g g⁻¹). Other regions with similar cadmium concentrations include Waikato (0.55 μ g g⁻¹) and Bay of Plenty (0.53 μ g g⁻¹). Dairy farming with high fertiliser use is traditional in these areas and the soils of these regions have a high propensity to accumulate cadmium according to the FMRA cadmium model (see below). The regions with the lowest cadmium average concentrations were Canterbury (0.17 μ g g⁻¹), Gisborne (0.20 μ g g⁻¹), Manawatu-Wanganui (0.17 μ g g⁻¹), Nelson-Marlborough (0.11 μ g g⁻¹), Otago (0.20 μ g g⁻¹) and Southland (0.20), all historic sheep farming areas. Soils from these regions have a low propensity to accumulate cadmium according to the FMRA cadmium model (see below).

An initial estimation of future topsoil cadmium concentrations was carried out using the FMRA CadBal model. This model only produces results based on the New Zealand Soil Generic Classification. Results from running the data from the database through the model showed BGCL, YBL and YBP soils accumulated more cadmium than the other soil types while alluvial, YBE and YGE accumulated the least cadmium. Differences in soil type cadmium accumulation appear due to differences in leaching losses and soil bulk densities input to the model. Increasing the sampling depth from 0–7.5 to 0–10 to 0–20 cm was shown to dilute the cadmium concentration effectively from 0.43 μ g g⁻¹ to 0.37 μ g g⁻¹ to 0.26 μ g g⁻¹ for a YBE under dairy (30 kg P ha⁻¹y⁻¹).

The model also showed pastoral farming resulted in increased soil cadmium content in all regions and nationally. The peat soils of the Waikato region showed the highest potential for cadmium accumulation. The regions with the highest present-day soil cadmium content also have the highest potential to accumulate cadmium in the future. Sheep/beef farming led to more accumulation of cadmium than dairy when both are under the same fertiliser regime although, dairy farming requires more fertiliser for optimal production than beef and sheep farming in practice. The difference in accumulation was due to the difference in sedimentation losses (900 kg ha⁻¹ y⁻¹ for dairy farming and 500 kg ha⁻¹ y⁻¹ for sheep and beef). However, sedimentation losses are due to a range of factors including topography, soil type, leaching class and climate, not just farm type, and this result is questionable. Cadmium levels in soils under dairy farms were shown to decrease in cadmium with time once soil cadmium exceeded about 1.3 mg kg⁻¹ due to removal in sediment, erosion products and leaching. This result has important implications for farm sustainability and its accuracy should be further investigated.

Without consideration of bulk density, very light organic soil appears to contain extremely high amounts of cadmium compared with mineral soil. However, when converted onto a volumetric basis, both organic soil and mineral soil can have similar amounts of cadmium.

Conclusions

- 1. Sites with land-uses such as reserve, tussock, bush, indigenous forest and plantation forestry or described as unfertilised may be considered background and are suitable for assessing soil cadmium baseline concentrations
- 2. The national average soil cadmium concentration measured in the database was 0.35 μ g g⁻¹ and the national average baseline soil cadmium value was 0.16 μ g g⁻¹
- 3. Cropping, pasture and horticulture land-uses all had higher concentrations of cadmium in soil than background landuse indicating accumulation of cadmium in these soils
- 4. Horticulture land-uses had the highest average soil cadmium concentration $(0.50 \ \mu g \ g^{-1})$ indicative of high fertiliser use or some other localised contamination source. Samples classified as berries $(0.68 \ \mu g \ g^{-1})$, kiwifruit $(0.71 \ \mu g \ g^{-1})$ and orchards $(0.66 \ \mu g \ g^{-1})$ contained soils double or nearly double the national average of 0.35 $\ \mu g \ g^{-1}$ reflecting high inputs of fertiliser or some other source of cadmium contamination. Although market gardening had an average soil cadmium concentration of 0.46 $\ \mu g \ g^{-1}$, it had the greatest range of values and had more data points outside the 95 and 5 percentiles than the other farm types
- 5. Pastoral land-uses had the highest individual soil cadmium value (2.70 μ g g⁻¹). Dairying showed the highest average soil cadmium concentrations (0.73 μ g g⁻¹), averaging double the national average of 0.35 μ g g⁻¹. Dairying also showed the largest number of data points outside the 95 and 5 percentiles for the pasture landuse, reflecting the wide range of cadmium values measured. Average values for beef farming and all drystock were slightly above (0.42 μ g g⁻¹ and 0.40 μ g g⁻¹ respectively) and sheep farming slightly below (0.33 μ g g⁻¹) the national average
- 6. Soils where tobacco was grown were more elevated in cadmium $(0.34 \ \mu g \ g^{-1})$ than other cropping soils. These soils will now have other land-uses as tobacco is no longer grown in New Zealand. Cropped soils appear to be mostly below the national average of $0.35 \ \mu g \ g^{-1}$ for cadmium, however, these soils are tilled to a greater depth (200 cm) than other land-uses and dilution decreases the cadmium concentration

- 7. The data in the database were tested for representativeness by comparing topsoil totalcadmium concentrations and associated metadata with LCDB2 vegetation class and the number of sites per 100 square km calculated. Depleted tussock grassland, tall tussock grassland and sub-alpine shrubland are relatively poorly represented with number of sites per 100 square km less than 0.04. However, further sampling based on vegetation class is not required as the main farming vegetation classes are adequately covered
- 8. The region with the highest average cadmium concentration was Taranaki (0.66 μ g g⁻¹). Other regions with cadmium concentrations above the national average include Waikato (0.60 μ g g⁻¹) and Bay of Plenty (0.52 μ g g⁻¹). Dairy farming with high fertiliser use is traditional in these areas and likely to be the cause for the elevated levels. The regions with the lowest cadmium average concentrations were Canterbury (0.18 μ g g⁻¹), Gisborne (0.20 μ g g⁻¹), Manawatu-Wanganui (0.17 μ g g⁻¹), Nelson-Marlborough (0.23 μ g g⁻¹), Otago (0.20 μ g g⁻¹), Southland (0.20 μ g g⁻¹) and Wellington (0.20), all historic sheep farming areas
- 9. Results from running the data from the database through the FMRA CadBal model showed:
 - a. Pastoral farming resulted in increased soil cadmium content in all regions
 - b. Regions with the highest present day soil cadmium content also have the highest potential to accumulate cadmium in the future
 - c. Peat soil apparently has the greatest potential to accumulate cadmium from fertiliser
 - d. BGCL, YBL and YBP soils accumulated higher amounts of cadmium than alluvial, YBE and YGE soils, which accumulated the least cadmium. Gley soils were intermediate. Differences in soil type cadmium accumulation appear due to differences in the assumed leaching losses and soil bulk densities input to the model
 - e. Increasing the sampling depth effectively diluted the cadmium concentration
 - f. Sheep/beef farming lead to more accumulation of cadmium than dairy when both are under the same fertiliser regime. Accumulation under dairy is higher when both are under their respective optimal fertiliser schemes
 - g. Cadmium levels in soils under dairy farms receiving 30 kg P ha⁻¹y⁻¹ or less appear to decrease with time once soil cadmium exceeded about 1.3 mg kg⁻¹
- 10. Weaknesses identified in the CadBal model include:
 - a. The model is based on the New Zealand Genetic Soil Classification, which has been superseded
 - b. The model was not calibrated for many recent soils, podzols, rendzinas or intergrades between soil types
 - c. The sedimentation loss figures used in this analysis by the model are oversimplified as sedimentation losses are due to a range of factors including topography, soil type, leaching class and climate, not just farm type
 - d. Cadmium leaching figures for different soil groups are assumed to be independent of location and climate
 - e. A default "zero" leaching figure was used for alluvial soils
 - f. No consideration is given in the model to accumulation of erosion debris
 - g. The model assumes atmospheric deposition of cadmium is constant across the whole country
 - h. No consideration is given to animal relocation of cadmium through faeces or land application of dairyshed effluent
- 11. When soil bulk density is not considered, organic soil can appear to have extremely high cadmium levels compared with mineral soil.

Recommendation Specific to this Project

1. There were few samples with associated land-use data for soils utilised for cropping by crop type. Other specific land-uses with few samples include horse and deer farming and vineyards. Further samples should be obtained from these land-uses from across the country

and analysed for cadmium following the sampling and analysis scheme included in this report to improve the representativeness of the dataset. Details regarding current and historical crop type should be collected simultaneously where possible

- 2. To increase confidence in the regional ranges and averages, further sampling following the sampling and analysis scheme included in this report, to 50 samples per region is recommended in regions with low numbers of samples. These regions include Gisborne, Nelson-Marlborough, Northland and Westland
- 3. Cadmium concentration data on peat, organic and other light soils should be assessed after conversion to a volumetric basis to account for bulk density
- 4. The results from the CadBal model could be improved to portray sediment, erosion and leaching losses more accurately and to include deposition of erosion debris. The sedimentation losses used by the model appear overestimated. The apparent decrease in soil cadmium predicted by the model for dairy farms receiving 30 kg P ha⁻¹y⁻¹ should be tested in a field study
- 5. The CadBal model should also be calibrated using the current New Zealand soil classification (Hewitt 1998) and include all soil orders
- 6. A national soil inventory including site and soil information at 8-kilometre intervals across New Zealand should be carried out. Sampling priority would be given to sites with intensive land use. The information should be collected by way of a grid survey, each sample point should be georeferenced and accessory data collected on the landform, slope, current land use, soil classification, profile characteristics, and a range of contaminants including cadmium and other potential contaminants should be analysed. The Carbon Monitoring System (MfE and Landcare Research) provides a mechanism by which some of this sampling regime could be carried out. Soil samples should be extracted using a strong acid digestion procedure and analysed using graphite furnace atomic absorption spectrometry or inductively coupled emission mass spectroscopy by a New Zealand accredited laboratory.

General Recommendations

- 1. Soil bulk density should be considered when assessing soil contamination, especially when setting maximum permitted levels and other guidelines as soils of low bulk density can appear to have extremely high contaminant concentrations compared with soil of high bulk density
- 2. Future soil samples should also be analysed for other potential contaminants such as fluorine.

1. Introduction

Cadmium accumulation in soils is largely irreversible and ultimately unsustainable, yet is tied to phosphate use, which underpins New Zealand's agricultural production. It also appears likely that cadmium uptake in some crops and animals could cause non-compliances with food standards. Assessment of New Zealand's cadmium status requires an objective assessment of a baseline, current and projected future levels of cadmium accumulation in soils, plants, animals and humans. First, it is important to establish what the baseline levels of cadmium in soil may have been, what the current levels are and what projected future levels may be within established timeframes. Landcare Research was engaged to establish a GIS-based system providing national coverage of baseline and current cadmium levels in soil, with the option of establishing future levels.

2. METHODS

NATIONAL AND REGIONAL CADMIUM LEVELS IN TOPSOIL

Identification of Data Sources

Current data sources of cadmium data were identified with the help of MAF. Samples were topsoils of varying depth to a maximum of 20 cm. Most samples were 0 to 10 or 0 to 7.5 cm depth. The average sample depths for background, pastoral, cropping and horticultural soil samples were 10.0, 9.4, 14 and 13 cm respectively. Cropping and horticultural soils are regularly mixed due to cultivation while pastoral and background soils often are not cultivated. Samples were mainly collected at two time periods; 1989–1995 and 2000 to the present, and the results presented here may underestimate the real situation. Some samples had associated grid references suitable for plotting on maps while others only had regional location data. Other samples included land-use data but were not georeferenced. Samples from sites of known cadmium contamination, such as fertiliser storage facilities or irrigated with effluent, were not included in the database analysis. Where possible, the largest set of samples was used for analysis. The following data sources were identified:

AgResearch

AgResearch provided 4 sets of data:

- The nation wide survey of pastoral soils
- A survey of south Auckland market gardens
- A survey of mid-Canterbury wheat farms
- A small study in the Waikato

The nation wide survey of pastoral soils is the best internally consistent national survey that specifically targeted cadmium (and some other contaminants). Both unfertilised and fertilised sites were sampled. Extraction was by refluxing with a mixture of concentrated perchloric and nitric acid. Analysis was by Flame Atomic Absorption Spectroscopy or Graphite Furnace Atomic Absorption Spectroscopy. The other surveys provide valuable data for specific land-uses in a particular location.

Landcare Research

Landcare Research provided data from a comparison of archived and present-day soil samples, samples from a transect away from a fertiliser bin, a comparison of paired unfertilised and fertilised soils, and a survey of Waikato wetlands. These surveys also included land-use and soil-

type data. Extraction was by refluxing with nitric acid. Analysis was by Flame Atomic Absorption Spectroscopy or Graphite Furnace Atomic Absorption Spectroscopy.

Regional Councils

Environment Canterbury and Taranaki Regional Council provided cadmium data and Environment Waikato, Greater Wellington and Environment Bay of Plenty included multi-element analysis data in their '500 soils' regional soil surveys. These surveys also included land-use and soil-type data. In addition, Environment Waikato provided multi-element analysis, land-use and soil-type data for a transect of soil sites across the region, and Greater Wellington provided cadmium data for parks and reserves. Methods reported included: Extraction by refluxing with a mixture of concentrated perchloric and nitric acid and analysis by Flame Atomic Absorption Spectroscopy or Graphite Furnace Atomic Absorption Spectroscopy; or extraction by nitric and hydrochloric acid followed by analysis by Inductively Coupled Plasma Mass Spectroscopy; or analysis of whole sample by X-Ray Fluorescence spectroscopy.

Tertiary Institutes

Cadmium and soil type data was extracted from 6 publications from Massey University and 1 publication from The University of Waikato and discussions with the authors (Gaw et al. 2005; Loganathan et al. 1995, 1997, 1999; Loganathan & Hedley 1997; Zanders et al. 1999; Andrewes et al. 1996). These publications also provided records of historic fertiliser use.

Dr David Hawke, Christchurch Polytechnic, provided cadmium, landuse and soil type data from his research into soil indicators of pre-European seabird breeding in New Zealand (Harrow et al. 2006; Hawke 2003; Hawke et al. 1999).

Some data were supplied with regional location data but under the condition that they were not to be plotted on a map or the exact sample locations indicated beyond which region they were from. Some other data had only regional location data but lacked exact grid references. These data were used with the data with full location data to assess national and regional cadmium concentrations and associations with landuse. They have not been plotted on any of the maps produced in this report.

Database

Data on topsoil total-cadmium levels and associated metadata from existing Environment Waikato, Greater Wellington and Environment Canterbury soil surveys was collated into a relational geospatial database for total cadmium. This database was extended to a national study by collating existing data from all further sources of data identified in the Statement of Interest "Establishing Cadmium levels in New Zealand" and from other sources found by Landcare Research. Data were categorised under the following headings:

Sample Name - Identification given by data source

Date - Date or year of sampling

Depth (cm) – depth of soil sample

Grouping - Is sample part of a pair, set, profile or transect

Unique Number – Unique number given each sample pair, set, profile and transect

New Zealand Soil Classification – Some soil sample data were already classified under the New Zealand Soil Classification (NZSC) while others were classified as soil series, soil set, soil type or soil group. These other classes were converted to NZSC soil order using lookup tables.

Easting – 7 digit NZMS 260 grid reference. Data not supplied with NZMS 260 grid references were converted e.g. from NZMS1 or degrees, minutes, seconds.

Northing – 7 digit NZMS 260 grid reference. Data not supplied with NZMS 260 grid references were converted e.g. from NZMS1 or degrees, minutes, seconds.

Landuse - A description of the landuse at the time of sampling

Cd μ g g⁻¹ – Gravimetric concentration of cadmium in parts per million.

Variation and drivers of variation were identified by relating collated samples to soils in the Fundamental Soils Layer and National Soils Database (from Land Resource Information System). Areas where data is lacking and the relative need to reduce uncertainty in different landscapes were identified.

Maps were created using MXDs, JPEGs, Data and Shapefiles.

MXDs

Maps were generated in ArcMap 9.1 build 722. The *.MXD files are on this directory.

JPEGs

These are the *.jpg files used in the report

DATA		
Base data		
Mcoastnz	is a coverage of the outline of the coast	
Nzregcoast.shp	is a shapefile of the regional boundaries	

Regionmaps.dbf is a dbase file of cadmium data used for the regional and NZ maps

SHAPEFILES

The cadmium data files were converted into shapefiles Cdregions.shp = regionmaps.dbf

2.2 DATABASE ANALYSIS

The average and range of data from all sites where landuse was recorded (1794 samples) was calculated and compared with the average and range of data from all sites that were georeferenced (1649 samples) to test robustness of the data set. To evaluate what type of land cover is represented by the cadmium data, the data were tested for representativeness by overlaying sample landuse onto the Land Cover Database 2 (LCDB2) vegetation class. The numbers of sites per 100 square km for each vegetation class were calculated. Vegetation classes that had greater than 1 site per 100 square km were considered to be relatively well represented in the database. Data on topsoil total-cadmium concentration and associated data were tabulated according to region and landuse, and graphed as boxplots.

2.3 PREDICTING FUTURE CADMIUM LEVELS

Future levels of cadmium in New Zealand were calculated using the New Zealand Fertiliser Manufacturers Research Association (FMRA) CadBal model. Data from the database was supplied to the FMRA for input into the model. This model is based on the New Zealand Genetic Soil Classification which has been superseded by the New Zealand Soil Classification (Hewitt 1998). The model has been calibrated against data from Winchmore AgResearch Station (Roberts & Longhurst 1997). 8 soil groups are considered by the model. They are Yellow Grey Earth (YGE), Yellow Brown Earth (YBE), Yellow Brown Loam (YBL), Yellow Brown Pumice (YBP), Gley (G), Peat (P), Brown Granular Loams & Clay (BGLC) and Alluvial (ALL). Alluvial soils are a subset of the recent soils group in the New Zealand Genetic Soil Classification. The model was not calibrated for other recent soils, podzols, rendzinas or intergrades between soil types. Parameters used for entry into the CadBal model include initial soil cadmium concentration, region, farm type, soil group and the output files given a classification name e.g. WKD3L for Waikato Dairy on YBL with low initial cadmium. Cadmium leaching figures for different soil groups are those described by Grey et al. (2003a) which range between 270 and 850 mg ha⁻¹ y⁻¹ (Table 1). The location of the soil did not affect the leaching figure used, e.g., Northern YGE were considered to have the same leaching figure as Central and Southern YGE despite these locations having different climatic conditions. The model's default "zero" leaching figure was used for alluvial soils. The soil bulk density figures used in the model are also detailed in Table 1. The atmospheric accession figure for cadmium used throughout New Zealand was 200 mg ha⁻¹ y⁻¹ (Grey et al. 2003b).

The model was run using the following default values and assumptions:

- Sedimentation losses from each site are 900 kg ha⁻¹ y⁻¹ for dairy farming and 500 kg ha⁻¹ y⁻¹ for cropping and sheep and beef farming
- Sedimentation losses are not influenced by soil group or landscape topography
- There is no accumulation of erosion debris
- Atmospheric deposition of cadmium is constant across the whole country
- Leaching losses are identical in all regions for a particular soil group
- Alluvial soils had no losses from leaching
- Animal relocation of cadmium through faeces or land application of dairyshed effluent is insignificant
- Diammonium phosphate (DAP) is used in cropping while single superphosphate (SSP) is used in animal production
- DAP contains 175 mg Cd kg P⁻¹ while SSP contains 230 mg Cd kg P⁻¹

Table 1: Cadmium leaching figures (from Grey et al. 2003a) and soil bulk density figures used by the CalBal model for different soil groups

Soil types	Leaching figure used	Soil Bulk Density figure used
	$(mg ha^{-1} y^{-1})$	(kg m^{-3})
Yellow Brown Loam and Brown	425	750
Granular Clays and Loams		
Yellow Brown Earths	540	910
Yellow Grey Earths	270	1070
Yellow Brown Pumice	280	680
Gley	280	870
Alluvial ¹	0^2	750

¹ Not a defined soil group in the New Zealand Genetic Soil Classification

² CalBal model default value

Based on measured data from the cadmium database, 287 scenarios were run using average data for New Zealand as a whole and for regions. PDF files of the scenario outputs are on the accompanying CD under the CalBal scenarios directory. Soil bulk density emerged as an influential factor and this influence is discussed in a separate section.

2.4 A NATIONALLY CONSISTENT SAMPLING AND ANALYSIS SCHEME

Assessment of an overseas national sampling and analysis scheme and options for New Zealand are presented and discussed.

3. RESULTS AND DISCUSSION

3.1 NATIONAL AND REGIONAL TOPSOIL TOTAL-CADMIUM SOIL LEVELS

Data on topsoil total-cadmium concentration and associated metadata were tabulated according to region and the number of sites per region calculated (Table 2). Data from a total of 1649 samples with regional location data were used and the national average concentration for cadmium calculated to be $0.35 \ \mu g \ g^{-1}$. Data from 1443 of these samples also had grid references suitable for plotting on a national map (Figure 1). These data were plotted as boxplots (Figure 2). All regions with greater than 8 data points showed data skewed towards 0 and points outside the 90 percentile whiskers. Individual regions were plotted (Figures 3–16) Cadmium concentrations above 1 $\mu g \ g^{-1}$ were found in the Taranaki, Waikato and Bay of Plenty Regions.

The region with the highest average cadmium concentration was Taranaki (0.66 μ g g⁻¹) (Table 1). Other regions with similar cadmium concentrations include Waikato (0.60 μ g g⁻¹) and Bay of Plenty (0.52 μ g g⁻¹). Dairy farming with high fertiliser use is traditional in these areas and likely to be the cause of the elevated levels. The regions with the lowest cadmium average concentrations were Canterbury (0.18 μ g g⁻¹), Gisborne (0.20 μ g g⁻¹), Manawatu-Wanganui (0.17 μ g g⁻¹), Nelson-Marlborough (0.23 μ g g⁻¹), Otago (0.20 μ g g⁻¹) and Southland (0.20 μ g g⁻¹), all historic sheep farming areas. Soils in higher cadmium areas are dominated by Allophanic, Pumice and Granular soils while regions with lower cadmium are dominated by Recent, Pallic and Brown Soils. However, soil order was often not described for the sample sites, making it difficult to identify if there is a soil component to the cadmium concentrations or if differences in cadmium are due to land-use only.

Region	Number of samples	Average ($\mu g g^{-1}$)	Range ($\mu g g^{-1}$)
Auckland	195	0.32	0.03-1.10
Bay of Plenty	130	0.52	0.05-1.60
Canterbury	425	0.18	0.01-0.89
Gisborne	8	0.20	0.05-0.27
Hawke's Bay	36	0.31	0.05-0.63
Manawatu-	78	0.17	0.04-0.9
Wanganui			
Nelson-	50	0.23	0.03-1.00
Marlborough			
Northland	24	0.33	0-0.67
Otago	42	0.20	0.03-0.91
Southland	46	0.20	0.04-0.62
Taranaki	83	0.66	0.04-1.7
Waikato	362	0.60	0.03-2.52
Wellington	169	0.20	0.05-0.90
Westland	1	0.40	—
National	1649	0.35	0-2.52

Table 2: Number of topsoil samples, average and range of cadmium concentration per region

The regions of Canterbury and Waikato had the highest number of samples (425 and 362 respectively). The regions of Bay of Plenty (130), Taranaki (83) and Wellington (169) are also

relatively well represented. Regions with low numbers of samples, where further sampling may be beneficial to increase confidence, include Gisborne (8), Hawke's Bay (36), Northland (24) and Westland (1).

Figure 1: Regional map of topsoil cadmium levels

Figure 2: Boxplots of cadmium in soil according to region showing mean and 90% confidence levels

Figure 3. Regional map of Northland topsoil cadmium levels

Figure 4: Regional map of Auckland topsoil cadmium levels

Figure 5: Regional map of Waikato topsoil cadmium levels

Figure 6: Regional map of Bay of Plenty topsoil cadmium levels

Figure 7: Regional map of Manawatu-Wanganui topsoil cadmium levels

Figure 8: Regional map of Taranaki topsoil cadmium levels

Figure 9: Regional map of Gisborne topsoil cadmium levels

Figure 10: Regional map of Hawke's Bay topsoil cadmium levels

Figure 11: Regional map of Wellington topsoil cadmium levels

Figure 12: Regional map of Nelson-Marlborough topsoil cadmium levels

Figure 13: Regional map of Canterbury topsoil cadmium levels

Figure 14: Regional map of Westland topsoil cadmium levels

Figure 15: Regional map of Otago topsoil cadmium levels

Figure 16: Regional map of Southland topsoil cadmium levels

3.2 BACKGROUND LEVELS OF CADMIUM IN NEW ZEALAND

Sites with land-uses such as native, tussock, plantation forestry and parks or described as "unfertilised" may be considered suitable for assessing soil cadmium background concentrations (Table 3). Because it had the largest number of samples, the landuse "unfertilised" has the largest influence on the result. It also has the highest cadmium concentrations of the background soils, possibly as a result of contamination, e.g., fertiliser drift or animal transfer. As we were unable to identify conclusively if these samples were contaminated or not we report both a total background average and a background without unfertilised average.

There were no statistically significant or visual differences between soil type or regions for this background data, and the national average was calculated using data from all soil types and regions. Most background soil samples were 10 cm deep with a few soil samples of other soil depths (average 10.0 cm). The average was 0.16 μ g g⁻¹, similar to the 0.20 μ g g⁻¹ found by Roberts et al. (1994) for non-farmed soils. The background average without "unfertilised" samples was lower – 0.11 μ g g⁻¹. Boxplots of the data by landuse showed skewedness towards 0 and points outside the 90 percentile whiskers (Figure 17). This skewedness could be caused by natural variation, perhaps related to soil bulk density (as discussed later in section 3.8) or to a localised source of contamination for some samples. However, further investigation would be required to identify the cause definitively.

Landuse	Number of samples	Average Cd ($\mu g g^{-1}$)	Range ($\mu g g^{-1}$)
Native	69	0.10	0.00-0.39
Forestry	42	0.14	0.02-0.65
Parks	36	0.11	0.06-0.20
Tussock	4	0.08	0.07-0.09
"Unfertilised"	221	0.19	0.02-0.77
Background (No unfertilised)	151	0.11	0.00-0.65
Total Background	372	0.16	0.00-0.77

Table 3: Background Cd concentration by landuse

Figure 17: Boxplots of background cadmium in soil by land-use

3.3 CURRENT LEVELS OF CADMIUM IN NEW ZEALAND

Data on topsoil total-cadmium concentrations and associated metadata were tabulated according to 4 major landuse classes (Table 4). The average and range were the same as those calculated using the georeferenced subset, confirming the robustness of the data set. Sites with land-uses such as native, tussock, plantation forestry and parks or described as "unfertilised" are considered to represent background soil cadmium concentrations (Table 3, Figure 17). Land that had been used for agriculture (cropping, pasture and horticulture) had elevated concentrations of cadmium in soil compared with background values indicating accumulation of cadmium in these soils. Horticulture had the highest average ($0.50 \ \mu g \ g^{-1}$), while pasture had the highest individual value ($2.52 \ \mu g \ g^{-1}$), indicative of high fertiliser use or some other localised contamination source. Again, boxplots showed data skewed towards 0 and points outside the 90 percentile whiskers (Figure 18). This skewedness could be caused by natural variation, perhaps related to soil bulk density (as discussed later in section 3.5), localised sources of contamination for some soils or a history of high inputs of cadmium from fertiliser.

Landuse	Number of	Average sampling	Average Cd	Range ($\mu g g^{-1}$)
	samples	depth (cm)	$(\mu g g^{-1})$	
Cropping	301	14.3, Mostly 0–15	0.24	0.00-0.99
		9.39, Mostly 0–7.5,		
Pasture	825	0–10 or 10–5	0.43	0.00-2.52
Horticulture	296	13.1, Mostly 0–10	0.50	0.00-2.00
Background	372	10.0, Mostly 0–10	0.16	0.00-0.77
All Landuses	1794		0.35	0.00-2.52

Table 4: Cd concentration in 4 major landuse classes

Figure 18: Boxplots of cadmium in soil in 4 major landuse classes

Each of the 3 major agricultural land-uses was further investigated. Most soil samples from cropping land were 15 cm deep, with a few soil samples of 10 cm depth (average 14.3 cm). Relatively few (33 out of 301) of the cropping land-use data included detailed information on crop type (Table 5, Figure 19). One reason for this may be several crops being grown in rotation at one location; so it would therefore be incorrect to assign one crop type to such a site. Where there were crop type data, they were mostly from two regions – Canterbury and Nelson-Marlborough. Soils where tobacco was grown were more elevated in cadmium (0.34 μ g g⁻¹) than other cropping soils. These soils will now have other land-uses as tobacco is no longer grown in New Zealand. Cropped soils appear to be mostly below the national average of 0.35 μ g g⁻¹ for cadmium.

Landuse	Number of samples	Average Cd (μ g g ⁻¹)	Range ($\mu g g^{-1}$)
Barley	6	0.15	0.10-0.25
Maize	11	0.25	0.10-0.40
Peas	3	0.15	0.11-0.17
Tobacco	5	0.34	0.20-0.70
Wheat	8	0.11	0.09-0.16
All Cropping	301	0.24	0.00-0.99

 Table 5: Cd concentration in cropland by crop type

Figure 19: Boxplots of cadmium in cropland soil by crop type

Pasture land-use includes dairy and drystock farming. Soil samples from pastoral land were generally 7.5, 10 or 15 cm deep, with a few soil samples of other depths (average 9.39 cm). Drystock can be further broken down into beef, deer, horses and sheep. Dairying showed the highest soil cadmium concentrations (0.73 μ g g⁻¹), averaging double the national average of 0.35 μ g g⁻¹ (Table 6). Dairying also showed the largest number of data points outside the 95 and 5 percentiles for the pasture landuse (Figure 20), reflecting the wide range of cadmium values measured. Deer and horse farming were also associated with higher average concentrations of soil cadmium (0.68 μ g g⁻¹ and 0.53 μ g g⁻¹ respectively). However, there were few samples, and these farms were from 1 region – the Waikato, and may have previously been used for dairying. They may not reflect national trends. Average values for beef farming and all drystock were slightly above (0.42 μ g g⁻¹ and 0.40 μ g g⁻¹ respectively) and sheep farming slightly below (0.33 μ g g⁻¹) the national average.

Landuse	Number of samples	Average Cd ($\mu g g^{-1}$)	Range ($\mu g g^{-1}$)
Dairy	144	0.73	0.00-2.52
Deer	12	0.68	0.40-1.20
Beef	48	0.42	0.04-1.40
Horses	4	0.53	0.40-0.60
Sheep	34	0.33	0.03-1.20
All Drystock	111	0.40	0.00-1.40
All Pasture	825	0.43	0.00-2.52

Table 6: Cd concentration in pasture soils by farm type

Figure 20: Boxplots of cadmium in pasture soils by farm type

There was more information on the type of farming within the horticultural land-use then the other land-use classes. Most soil samples from horticultural land were 10 or 15 cm deep with a few soil samples of other soil depths (average 13.1 cm). Samples classified as berries ($0.68 \ \mu g \ g^{-1}$), kiwifruit ($0.71 \ \mu g \ g^{-1}$) and orchards ($0.66 \ \mu g \ g^{-1}$) contained soils double or nearly double the national average of $0.35 \ \mu g \ g^{-1}$ reflecting high inputs of fertiliser or some other source of cadmium contamination (Table 7). Although market gardening had an average soil cadmium concentration of $0.46 \ \mu g \ g^{-1}$, it had the greatest range of values and had more data points outside the 95 and 5 percentiles than the other farm types in the horticultural landuse class (Figure 21).

Landuse	Number of samples	Average Cd ($\mu g g^{-1}$)	Range ($\mu g g^{-1}$)
Berries	50	0.68	0.20-1.20
Kiwifruit	37	0.71	0.30-1.20
Vineyard	12	0.38	0.20-0.70
Market Gardening	142	0.46	0.00-2.00
Orchard	49	0.66	0.10-1.50
All Horticulture	296	0.50	0.00-2.00

Table 7: Cd concentration in horticultural soils by farm type

3.4 REPRESENTIVENESS OF THE DATA

The data in the database was tested for representativeness by comparing topsoil total-cadmium concentrations and associated metadata with LCDB2 vegetation class and the number of sites per 100 square km calculated (Table 8, Figure 22).

High-producing introduced grassland had the highest number of samples (930). Short-rotation cropland was next (345) but had the highest number of sites per 100 square km (10.34). Afforestation, orchard and other perennial crops, surface mine, urban parkland/ open space and vineyard are also relatively well represented with more than 1 site per 100 square km. Depleted tussock grassland, tall tussock grassland and sub alpine shrubland are relatively poorly represented with less than 0.04 sites per 100 square km. Further sampling based on vegetation class is not required as the main farming vegetation classes are adequately covered.

Table 8: Number of sites and number of sites per 100 square km according to LCDB2 vegetation class

LCDB2 vegetation class	Number of sites	Number of sites/100 km sq
Afforestation (imaged, post LCDB 1)	9	1.06
Broadleaved Indigenous Hardwoods	25	0.46
Built-up Area	16	0.98
Deciduous Hardwoods	4	0.48
Depleted Tussock Grassland	1	0.04
Estuarine Open Water	2	0.22
Forest Harvested	7	0.30
Gorse and Broom	4	0.20
Grey Scrub	1	0.14
Herbaceous Freshwater Vegetation	2	0.23
High-producing Exotic Grassland	930	1.05
Indigenous Forest	79	0.12
Low-producing Grassland	30	0.18
Mangroves	1	0.38
Manuka and or Kanuka	26	0.22
Matagouri	2	0.68
Orchard and Other Perennial Crops	38	6.52
Other Exotic Forest	13	0.98
Pine Forest – Closed Canopy	28	0.29
Pine Forest – Open Canopy	6	0.12
Short-rotation Cropland	345	10.34
Sub Alpine Shrubland	1	0.03
Surface Mine	2	2.05
Tall Tussock Grassland	4	0.02
Urban Parkland/Open Space	8	1.99
Vineyard	9	3.54

3.5 FUTURE LEVELS OF CADMIUM IN NEW ZEALAND

Future levels of cadmium in New Zealand were calculated using the New Zealand Fertiliser Manufacturers Research Association (FMRA) CadBal model. Based on measured data from the cadmium database, 287 scenarios were run and are summarised in Table 9. Full scenario data are found on pages 40 -44 of this report. Scenarios were run using average and range data for New Zealand as a whole and for regions.

The CalBal model indicated future soil cadmium concentrations would be higher under sheep/beef farming than under dairy farming after 100 years when both are under the same fertiliser regime (Figure 23) although, dairy farming requires more fertiliser for optimal production than beef and sheep farming. Dairy farming was shown to lead to more accumulation of cadmium in soil than sheep/beef farming when both are receiving more typical levels of fertiliser (50 kg ha⁻¹ y⁻¹ for dairy and 30 kg ha⁻¹ y⁻¹ for sheep/beef) (Figure 24). The sedimentation losses used by the model are oversimplified as sedimentation losses are due to a range of factors including topography, soil type, leaching class and climate, not just farm type. Table 10 shows the variation in total suspended sediment (TSS) measurements for different landuses, topography and soil type reported in 5 publications. It appears likely the sedimentation losses used by the model are overestimated for flat land and should be adjusted. In addition, the model gave no consideration to deposition of eroded sediment from steep land to flatter land, animal relocation of cadmium through faeces or land application of dairyshed effluent.

Site Name	Site Name Farm Topography		Soil type	TSS (kg ha ⁻¹ y ⁻¹)
	Туре			
Whatawhata Research	Sheep &	Mainly steep	Brown and Ultic Soils,	600–3212
Centre ¹	beef	land	patches of Allophonic	
Toeneni ^{1,2}	Dairy	Rolling to flat	Recent and Granular	142
roenepi	Dany	Ronning to hat	Soils	172
Purukohukohu ^{1,3}	Sheep & beef	Moderately steep	Pumice Soils	22
Moutere ⁴	Pasture	Moderately steep	Brown Soils, some	210, 320, 670,
			Recent, Podzols, Ultic,	and 790
			Melanic and Gley Soils	
Moutere ⁴	Forestry	Moderately steep	Brown Soils, some	40
			Recent, Podzols, Ultic,	
			Melanic and Gley Soils	
Big Bush ⁴	Native	Moderately steep	Brown Soils, some	60–110
	Bush		Recent, Podzols, Ultic,	
			Melanic and Gley Soils	
Pukekohe ⁵	Cropping	Rolling	Granular Soils	490-56800
Whatawhata Research	Sheep &	steep land (tread	Brown Soils	1666
Centre ⁶	beef	damaged soil)		
Whatawhata Research	Sheep &	Easy contoured	Allophonic Soils	714
Centre ⁶	beef	land (tread		
		damaged soil)		

Table 10: Comparison of sediment yield for different landuses, topography and soil type

¹ Quinn & Stroud (2002) ² Wilcock et al. (1999)

³ Cooper & Thomsen (1988)

Cooper & Thomsen (1988) 4 Decker (2002)

⁴ Basher (2003)

⁵ Basher et al. (1997)

⁶ Nguyen et al. (1998)

Table 9: Scenarios based on measured data from the cadmium database

Right St. Section 105 bused on medisared data norm the cadiman database									
	Farm type Fertiliser	Rate	Fertiliser Cd Soil Grou	n samnle	denth i	initial Cd ([°] d at +100 years	Vears to reach 1 mg/kg	Vears to reach 3 mg/kg
	kg P /ha/v	Nate 1	ma/ka P	m	ucpui	ma/ka	Ju at +100 years	rears to reach r mg/kg	rears to reach 5 mg/kg
National	Dairy	30	230 Alluvial		0.075	<u>6</u> 0	0 4199	724	
National	Dairy	30	230 Glev		0.075	Ő	0.4604	602	
National	Dairy	30	230 YBE		0.075	0	0.4278		
National	Dairy	30	230 YBL		0.075	0	0.5022	587	
National	Dairy	30	230 YBP		0.075	0	0.5162	470	
National	Dairy	30	230 YGE		0.075	0	0.418	730	
National	Dairy	30	230 YGE		0.075	0.31	0.5129	675	
National	Dairy	30	230 YBL		0.075	0.5	0.6698	488	
National	Dairy	30	230 YBE		0.075	0.64	0.7205	782	
National	Dairy	30	230 Glev		0.075	1	1.0591	0	
National	Dairy	30	230 Alluvial		0.075	1.09	1.1301	0	
National	Dairy	30	230 YBL		0.075	1.35	1.3394	0	
National	Dairy	30	230 YBP		0.075	1.51	1.4995	0	
National	Dairy	30	230 YBL		0.075	2.36	2.1833	0	
National	Dairy	38	230 YBL		0.075	0.5	0.9839	104	
National	Dairy	38	230 YBL		0.075	2.36	2.5188	0	604
National	Dairy	50	230 YGE		0.075	0	0.8412	125	522
National	Dairy	50	230 YBE		0.075	0	0.9215	112	474
National	Dairy	50	230 YBL		0.075	0	1.1897	81	339
National	Dairy	50	230 YBP		0.075	0	1.1997	80	332
National	Dairy	50	230 Gley		0.075	0	0.9874	102	425
National	Dairy	50	230 Peat		0.075	0	1.6206	55	225
National	Dairy	50	230 Alluvial		0.075	0	0.8755	119	487
National	Dairy	50	230 BGCL		0.075	0	1.0884	90	379
National	Dairy	50	230 YGE		0.075	2.52	2.9495	0	113
National	Dairy	50	230 YBE		0.075	2.52	2.9832	0	104
National	Dairy	50	230 YBL		0.075	2.52	3.1559	0	74
National	Dairy	50	230 YBP		0.075	2.52	3.1734	0	72
National	Dairy	50	230 Gley		0.075	2.52	3.0403	0	92
National	Dairy	50	230 Peat		0.075	2.52	3.4652	0	48
National	Dairy	50	230 Alluvial		0.075	2.52	2.9855	0	104
National	Dairy	50	230 BGCL		0.075	2.52	3.0933	0	83
National	Dairy	30	230 Gley		0.1	0.01	0.4027	802	
National	Dairy	30	230 Gley		0.1	1.33	1.3414	0	
National	Dairy	30	230 YBE		0.1	0	0.3751		
National	Dairy	30	230 YBE		0.1	0.89	0.918	484	
National	Dairy	30	230 YBL		0.1	0.14	0.4657	771	
National	Dairy	30	230 YBL		0.1	1.31	1.3069	0	
National	Dairy	30	230 YBP		0.1	0	0.4516	627	
National	Dairy	30	230 YBP		0.1	1.55	1.537	0	
National	Dairy	38	230 YBL		0.1	0.14	0.6635	199	
National	Dairy	38	230 YBL		0.1	1.31	1.5639	0	
National	Dairy	30	230 YBE		0.2	0	0.2643		
National	Dairy	30	230 YBE		0.2	1.03	1.0367	0	
National	Dairy	30	230 YBL		0.2	0.18	0.3697		
National	Dairy	30	230 YBL		0.2	1.43	1.4205	0	
National	Dairy	38	230 YBL		0.2	0.18	0.4746	389	
National	Dairy	38	230 YBL		0.2	1.43	1.5534	0	
National	Lettuce	80	175 BGLC		0.15	0.62	1.5892	39	255
National	Potato	45	175 BGLC		0.15	0	0.5957	171	556
National	Potato	45	175 BGLC		0.15	0.89	1.445	20	405
National	Potato	45	175 BGLC		0.15	0.89	1.447	20	405
National	sheep/beef	30	230 Alluvial		0.075	0	0.5474	228	981
National	sheep/beef	30	230 Gley		0.075	0	0.6293	188	809
National	sheep/beef	30	230 YBE		0.075	0	0.5798	214	957
National	sheep/beef	30	230 YBL		0.075	0	0.7384	151	666
National	sheep/beef	30	230 YBP		0.075	0	0.7532	147	632
National	sheep/beef	30	230 YGE		0.075	0	0.5438	230	990
National	sheep/beef	30	230 YGE		0.075	0.31	0.7084	185	945

NT (* 1	1 / 0	20	AND MOL	0.075	0.64	1 0074	0.0	0.40
National	sheep/beer	30	230 YBE	0.075	0.64	1.00/4	98	842
National	sheep/beef	30	230 Gley	0.075	1	1.3902	0	621
National	sheen/beef	30	230 Alluvial	0.075	1.09	1.408	0	726
National	shoop/boof	20	220 VDI	0.075	1 25	1 7907	0	442
National	sheep/beer	30	230 I BL	0.075	1.55	1./89/	0	442
National	sheep/beet	30	230 YBP	0.075	1.51	1.9557	0	382
National	sheep/beef	30	230 YBE	0.1	0	0.475	285	
National	sheen/beef	30	230 YBE	0.1	0	0.475	285	
National	sheen/heef	30	230 VBE	0.1	0.5	0 7036	177	
National	sheep/beer	30	230 IBE	0.1	0.5	0.7930	1//	
National	sheep/beef	30	230 YBE	0.1	0.73	1.002	100	
National	sheep/beef	30	230 YBL	0.1	0	0.6006	202	888
National	sheep/beef	30	230 YBL	0.1	0.04	0.6131	199	885
National	shoop/boof	20	220 VDI	0.1	1 1	1 4521	0	650
National	sheep/beer	30	230 IBL	0.1	1.1	1.4321	0	039
National	sheep/beet	30	230 YBL	0.1	1.25	1.5911	0	618
National	sheep/beef	30	230 YGE	0.1	0	0.4441	307	
National	sheen/beef	30	230 YGE	0.1	0.33	0.6329	242	
National	sheen/heef	30	220 Alluvial	0.15	0.07	0.3660	143	
National	sheep/beer	30		0.15	0.07	0.3009	443	
National	sheep/beef	30	230 Alluvial	0.15	0.27	0.4935	383	
National	sheep/beef	30	230 YBE	0.15	0	0.3598	427	
National	sheep/beef	30	230 YBE	0.15	0.67	0.8567	181	
National	sheen/heef	30	230 VGE	0.15	0	0.334	460	
National		30	230 TOL	0.15	0.00	0.334	400	
National	sheep/beef	30	230 YGE	0.15	0.66	0.8364	197	
National	sheep/beef	30	230 YBE	0.2	0	0.295	570	
National	sheen/beef	30	230 YBE	0.2	0.85	0.9841	113	
National	shoop/boof	50	220 PCCI	0.075	0	0.6805	160	745
National	sheep/beer	50	230 BUCL	0.073	0	0.0803	109	743
National	sheep/beet	50	230 Peat	0.075	0	1.048		
Auckland	Dairy	50	230 YBE	0.075	0.03	0.931	110	472
Auckland	Dairy	50	230 VBE	0.075	1.1	1 730	0	348
		50	230 TDL	0.075	1.1	1.757	9	348
Auckland	Dairy	50	230 BGCL	0.075	0.03	1.0977	89	3/8
Auckland	Dairy	50	230 BGCL	0.075	1.1	1.8836	0	278
Bay of Plen	n Dairy	50	230 YBE	0.075	0.05	0.9381	109	471
Bay of Plen	Dairy	50	230 VBE	0.075	1.6	2 1769	0	271
Day of Fich		50	250 TDL	0.075	1.0	2.1709	100	271
Bay of Plen	n Dairy	50	230 Gley	0.075	0.05	1.0042	100	423
Bay of Plen	n Dairy	50	230 Gley	0.075	1.6	2.2389	0	241
Bay of Plen	Dairy	50	230 YBL	0.075	0.05	1.2053	79	337
Bay of Plan	Doiry	50	220 VBI	0.075	1.6	2 3860	0	103
Day of Flen		50	230 I BL	0.075	1.0	2.3809	0	195
Bay of Plen	n Dairy	50	230 YBP	0.075	0.05	1.2157	/8	331
Bay of Plen	n Dairy	50	230 YBP	0.075	1.6	2.4024	0	188
Bay of Plen	n Dairv	50	230 Alluvial	0.075	0.05	0.8935	116	484
Bay of Plen	Dairy	50	230 Alluvial	0.075	1.6	2 164	0	273
	D .	50	230 MOE	0.075	0.01	2.104	125	275
Canterbury	Dairy	50	230 YGE	0.075	0.01	0.8444	125	522
Canterbury	Dairy	50	230 YGE	0.075	0.89	1.4935	18	414
Canterbury	Dairy	50	230 Alluvial	0.075	0.01	0.8935	116	484
Canterbury	Dairy	50	230 Alluvial	0.075	0.089	1 5309	17	385
Cishawa	Daim	50	220 VDE	0.075	0.005	0.0201	100	471
Gisborne	Dairy	50	230 YBE	0.075	0.05	0.9381	109	4/1
Gisborne	Dairy	50	230 YBE	0.075	0.27	1.0517	93	455
Gisborne	Dairy	50	230 Alluvial	0.075	0.05	0.8935	116	484
Gishorne	Dairy	50	230 Alluvial	0.075	0.27	1 014	98	466
Uarrilea Da	Dairy	50	220 VCE	0.075	0.05	0.0507	102	510
паwkes ва		50	230 TGE	0.075	0.03	0.8387	123	319
Hawkes Ba	Dairy	50	230 YGE	0.075	0.63	1.2647	57	454
Hawkes Ba	Dairy	50	230 Alluvial	0.075	0.05	0.8965	116	484
Hawkes Ba	Dairy	50	230 Alluvial	0.075	0.63	1 3023	54	422
Hawkee Ba	Dairy	50	230 VBE	0.075	0.05	0.0381	100	122
I I I D	, Daily	50	230 IDE	0.075	0.05	0.9301	109	4/1
Hawkes Ba	Dairy	50	230 YBE	0.075	0.63	1.3316	51	413
Hawkes Ba	Dairy	50	230 YBP	0.075	0.05	1.2157	78	331
Hawkes Ba	Dairy	50	230 YBP	0.075	0.63	1 5938	37	289
Manavata	Doiry	50	230 VCE	0.075	0.04	0.055	100	500
wanawatu	Dally	50	250 TUE	0.075	0.04	0.833	123	520
Manawatu	Dairy	50	230 YGE	0.075	0.9	1.5023	16	413
Manawatu	Dairy	50	230 Alluvial	0.075	0.04	0.8896	117	485
Manawatu	Dairy	50	230 Alluvial	0.075	0.9	1.5398	15	383
Manawatu	Dairy	50	230 VBE	0.075	0.04	0.0345	110	170
wianawatu	Dany	50	230 I DE	0.075	0.04	0.9343	110	4/2

Manawatu Dairy	50	230 YBE	0.075	0.9	1 5643	15	377
Nelson-Mat Dairy	50	230 YGE	0.075	0.03	0.8513	124	521
Nelson-Mar Dairy	50	230 YGE	0.075	0.05	1 5913	0	397
Nelson Mat Dairy	50	230 Alluvial	0.075	0.03	0.8850	117	485
Nelson Mar Dairy	50	230 Alluvial	0.075	0.05	1 6297	0	405
Nelson-Mar Dairy	50	250 Alluvial	0.075	1	1.0287	0	508
Nelson-Mai Dairy	50	230 YBE	0.075	0.03	0.931	110	4/2
Nelson-Mai Dairy	50	230 YBE	0.075	1	1.6515	0	362
Northland Dairy	50	230 YGE	0.075	0	0.8412	125	522
Northland Dairy	50	230 YGE	0.075	0.67	1.2995	51	448
Northland Dairy	50	230 YBE	0.075	0	0.9215	12	474
Northland Dairy	50	230 YBE	0.075	0.67	1.3656	46	408
Northland Dairy	50	230 Alluvial	0.075	0	0.8755	119	487
Northland Dairy	50	230 Alluvial	0.075	0.67	1.337	48	416
Northland Dairy	50	230 BGCL	0.075	0	1.0884	90	379
Northland Dairy	50	230 BGCL	0.075	0.67	1.5206	37	326
Otago Dairy	50	230 YGE	0.075	0.03	0.8513	124	521
Otago Dairy	50	230 YGE	0.075	0.91	1.5112	15	411
Otago Dairy	50	230 YBE	0.075	0.03	0.931	110	472
Otago Dairy	50	230 YBE	0.075	0.91	1.573	13	375
Otago Dairy	50	230 Alluvial	0.075	0.03	0.8859	117	485
Otago Dairy	50	230 Alluvial	0.075	0.91	1.5487	14	382
Southland Dairy	50	230 YGE	0.075	0.04	0.855	123	520
Southland Dairy	50	230 YGE	0.075	0.62	1 2561	59	455
Southland Dairy	50	230 YBE	0.075	0.02	0.9345	110	472
Southland Dairy	50	230 YBE	0.075	0.67	1 2221	53	414
Southland Dairy	50	230 I BE 220 Allowial	0.075	0.02	0.9906	117	414
Southland Dairy	50	230 Alluvial	0.075	0.04	0.8890	11/	483
Southland Dairy	50	230 Alluvial	0.075	0.62	1.2930	35 70	423
Taranaki Dairy	50	230 YBL	0.075	0.04	1.2019	/9	338
Taranaki Dairy	50	230 YBL	0.075	1.7	2.4/04	0	181
Taranaki Dairy	50	230 Peat	0.075	0.04	1.6322	54	224
Taranaki Dairy	50	230 Peat	0.075	1.7	2.8235	0	119
Waikato Dairy	50	230 YBL	0.075	0.03	1.1987	80	338
Waikato Dairy	50	230 YBL	0.075	2.52	3.1559	0	74
Waikato Dairy	50	230 Peat	0.075	0.03	1.6291	54	224
Waikato Dairy	50	230 Peat	0.075	2.52	3.4652	0	48
Waikato Dairy	50	230 BGCL	0.075	0.03	1.0977	89	378
Waikato Dairy	50	230 BGCL	0.075	2.52	3.0933	0	83
Waikato Dairy	50	230 YBP	0.075	0.03	1.2089	79	331
Waikato Dairy	50	230 YBP	0.075	2.52	3.1734	0	72
Waikato Dairy	50	230 Alluvial	0.075	0.03	0.8859	117	485
Waikato Dairy	50	230 Alluvial	0.075	2.52	2.9855	0	104
Wellington Dairy	50	230 YGE	0.075	0.05	0.8587	123	519
Wellington Dairy	50	230 YGE	0.075	0.9	1.5023	16	413
Wellington Dairy	50	230 Alluvial	0.075	0.05	0.8935	116	484
Wellington Dairy	50	230 Alluvial	0.075	0.9	1.5398	15	383
Wellington Dairy	50	230 YBE	0.075	0.05	0.9381	109	461
Wellington Dairy	50	230 YBE	0.075	0.00	1 5643	15	377
Westland Dairy	50	230 YBE	0.075	0.04	0.9345	110	472
Auckland sheen/beef	30	230 YBE	0.075	0.04	0.5888	211	955
Auckland sheep/beef	30	230 YBE	0.075	1.1	1 4296	0	715
Augland sheep/beef	30	230 TBE 220 PCCI	0.075	0.02	0.6802	168	713
Auckland sheep/beel	30	230 BGCL	0.075	0.05	0.0895	108	745
Auckland sheep/beer	30	230 BGCL	0.075	1.1	1.5164	0	554
Bay of Plen sheep/beef	30	230 YBE	0.075	0.05	0.5955	210	953
Bay of Pien sneep/beet	30	230 YBE	0.075	1.6	1.894	0	560
Bay of Plen sheep/beet	30	230 Gley	0.075	0.05	0.6456	184	805
Bay of Plen sheep/beef	30	230 Gley	0.075	1.6			-
Bay of Plen sheep/beef	30	230 YBL	0.075	0.05	0.7534	148	663
Bay of Plen sheep/beef	30	230 YBL	0.075	1.6	2.016	0	386
Bay of Plen sheep/beef	30	230 YBP	0.075	0.05	0.7687	144	629
Bay of Plen sheep/beef	30	230 YBP	0.075	1.6	2.0373	0	363
Bay of Plen sheep/beef	30	230 Alluvial	0.075	0.05	0.5917	206	872

Bay of Plan	sheen/heef	30	230 Alluvial	0.075	1.6	1 0105	0	405
Bay of Then	sheep/beer	30		0.075	1.0	1.9195	0	495
Canterbury	sheep/beef	30	230 YGE	0.075	0.01	0.5469	229	989
Canterbury	sheep/beef	30	230 YGE	0.075	0.89	1.2179	33	793
Canterbury	sheen/beef	30	230 Alluvial	0.075	0.01	0 5771	210	876
Contorbury	sheep/beef	20	220 Alburiol	0.075	0.000	1 2529	210	606
Canterbury	sheep/beel	50		0.075	0.089	1.2558	30	090
Gisborne	sheep/beef	30	230 YBE	0.075	0.05	0.5955	210	953
Gisborne	sheep/beef	30	230 YBE	0.075	0.27	0.7077	181	924
Gisborne	sheen/beef	30	230 Alluvial	0.075	0.05	0 5917	206	872
C: 1		20		0.075	0.05	0.5717	176	0/2
Gisborne	sheep/beer	30	230 Alluvial	0.075	0.27	0./136	1/6	842
Hawkes Bay	sheep/beef	30	230 YGE	0.075	0.05	0.5609	226	986
Hawkes Bay	sheen/beef	30	230 YGE	0.075	0.63	0.9779	107	867
Howkee Do	shoon/hoof	20	220 Alluvial	0.075	0.05	0.5017	206	872
Hawkes Ba	sheep/beer	30		0.073	0.03	0.3917	200	0/2
Hawkes Bay	sheep/beef	30	230 Alluvial	0.075	0.63	1.0137	97	763
Hawkes Bay	sheep/beef	30	230 YBE	0.075	0.05	0.5955	210	953
Hawkes Bay	sheen/heef	30	230 YBE	0.075	0.63	0 9985	101	844
Harrivas Da	shoop/boof	20	220 VDD	0.075	0.05	0.7697	144	620
nawkes ba	sheep/beel	50	230 TBP	0.075	0.03	0.7687	144	629
Hawkes Bay	sheep/beef	30	230 YBP	0.075	0.63	1.1636	68	554
Manawatu	sheep/beef	30	230 YGE	0.075	0.04	0.5572	227	987
Manawatu	sheen/heef	30	230 VGE	0.075	0.9	1 2273	30	790
Manavata	sheep, beer	20	220 Allowial	0.075	0.04	0.5979	207	072
Manawatu	sneep/beer	30	230 Alluvial	0.075	0.04	0.5878	207	8/3
Manawatu	sheep/beef	30	230 Alluvial	0.075	0.9	1.2631	27	694
Manawatu	sheep/beef	30	230 YBE	0.075	0.04	0.5921	211	954
Manawatu	sheen/beef	30	230 VBE	0.075	0.9	1 2445	29	772
Wanawatu	sheep/beer	50	230 182	0.075	0.9	1.2445	2)	112
Nelson-Mai	sheep/beef	30	230 YGE	0.075	0.03	0.5536	228	988
Nelson-Mai	sheep/beef	30	230 YGE	0.075	1	1.3208	0	760
Nelson-Mar	sheen/heef	30	230 Alluvial	0.075	0.03	0 5841	208	874
Nalaan Mar		20	230 Allowial	0.075	0.05	1.25((200	(7
Nelson-Mai	sneep/beer	30	230 Alluvial	0.075	1	1.3300	0	00/
Nelson-Mai	sheep/beef	30	230 YBE	0.075	0.03	0.5888	211	955
Nelson-Mar	sheep/beef	30	230 YBE	0.075	1	1.337	0	744
Northland	sheen/heef	30	230 VGE	0.075	0	0.5438	230	000
Norunand	sheep/beer	30	230 TGE	0.075	0	0.5458	230	990
Northland	sheep/beef	30	230 YGE	0.075	0.67	1.0144	96	856
Northland	sheep/beef	30	230 YBE	0.075	0	0.5798	214	957
Northland	sheen/beef	30	230 YBE	0.075	0.67	1 0343	91	834
Northland	shoop/boof	20	220 Alluvial	0.075	0	0.5129	210	877
Northland	sheep/beel	50	230 Alluvial	0.073	0	0.5158	210	0//
Northland	sheep/beef	30	230 Alluvial	0.075	0.67	1.0501	87	753
Northland	sheep/beef	30	230 BGCL	0.075	0	0.6805	169	745
Northland	sheen/beef	30	230 BGCL	0.075	0.67	1 1273	72	647
Otaga	sheep/beef	20	230 NCE	0.075	0.07	0.5526	228	000
Olago	sheep/beel	50	230 IGE	0.075	0.05	0.5550	228	900
Otago	sheep/beef	30	230 YGE	0.075	0.91	1.2366	27	787
Otago	sheep/beef	30	230 YBE	0.075	0.03	0.5888	211	955
Otago	sheen/beef	30	230 VBF	0.075	0.91	1 2538	26	769
Olago		30	230 100	0.075	0.01	0.5041	200	707
Otago	sheep/beer	30	230 Alluvial	0.075	0.03	0.5841	208	8/4
Otago	sheep/beef	30	230 Alluvial	0.075	0.91	1.2724	25	691
Southland	sheen/beef	30	230 YGE	0.075	0.04	0 5572	227	987
Conthland	ah aan /h aaf	20	220 VCE	0.075	0.62	0.0680	110	970
Southland	sheep/beel	50	230 IGE	0.075	0.62	0.9689	110	870
Southland	sheep/beef	30	230 YBE	0.075	0.04	0.5921	211	954
Southland	sheep/beef	30	230 YBE	0.075	0.62	0.9896	103	847
Southland	sheen/heef	30	230 Alluvial	0.075	0.04	0 5878	207	873
Southland		20	220 Allouis1	0.075	0.07	1.0046	207	7/1
Southland	sheep/beel	50	230 Alluvial	0.075	0.02	1.0046	99	/00
Taranaki	sheep/beef	30	230 YBL	0.075	0.04	0.7502	149	663
Taranaki	sheep/beef	30	230 YBL	0.075	1.7	2.1065	0	363
Taranaki	sheen/heef	30	230 Peat	0.075	0.04	1.038	96	404
		20	230 P 4	0.075	0.04	2.2542	<i>)</i> 0	21.5
I aranaki	sheep/beer	30	230 Peat	0.075	1./	2.3543	0	215
Waikato	sheep/beef	30	230 YBL	0.075	0.03	0.747	150	664
Waikato	sheep/beef	30	230 YBL	0.075	2.52	2.8488	0	150
Waikata	shaan/haaf	20	220 Deat	0.075	0.02	1 0249	06	404
Walkato	sheep/beer	30	250 T eat	0.075	0.03	1.0548	90	404
Waikato	sheep/beef	30	230 Peat	0.075	2.52	3.0699	0	87
Waikato	sheep/beef	30	230 BGCL	0.075	0.03	0.6893	168	743
Waikato	sheep/beef	30	230 BGCL	0.075	2.52	2.8153	0	168
Waikata	sheen/heaf	30	220 VBD	0.075	0.02	0.7621	145	620
vv alkato	sheep/beel	50	230 I DP	0.073	0.03	0.7021	145	030
Waikato	sheep/beef	30	230 YBP	0.075	2.52	2.8/13	0	140
Waikato	sheep/beef	30	230 Alluvial	0.075	0.03	0.5841	208	874
Waikato	sheen/heef	30	230 Alluvial	0.075	2 52	2 7834	0	190
waikat0		20		0.075	2.52	2.705	224	100
Wellington	sneep/beet	30	230 YGE	0.075	0.05	0.2609	226	986
Wellington	sheep/beef	30	230 YGE	0.075	0.9	1.2273	30	790
Wellington	sheep/beef	30	230 Alluvial	0.075	0.05	0.5917	206	872
Wellington	sheen/heef	30	230 Alluvial	0.075	0.0	1 2631	27	604
wenington		30		0.073	0.9	0.5055	21	094
Wellington	sneep/beet	30	230 YBE	0.075	0.05	0.5955	210	953
Wellington	sheep/beef	30	230 YBE	0.075	0.9	1.2445	29	772
Westland	sheen/heef	30	230 YBE	0.075	0.04	0 5921	211	954
		~ ~		0.010	U.U I			~ J J T

Wellingtor sheep/beet	18	230 YBE	0.1	0.19	0.3228			
Wellingtor sheep/beet	18	230 YBE	0.075	0.14	0.3342	0.0002		
Waikato sheep/beet	36	230 YBE	0.2	0.39	0.625	0.0002	276	
Waikato sheep/beet	36	230 YBE	0.1	0.65	1.0744	0.0006	82	645
Waikato sheep/beet	36	230 YBE	0.075	0.53	1.1024	0.0008	82	504
Waikato sheep/beet	36	230 YBL	0.2	0.68	0.9783	0.0004	108	908
Waikato sheep/beet	36	230 YBL	0.1	0.68	1.2635	0.0009	54	454
Waikato sheep/beet	36	230 YBL	0.075	0.8	1.5547	0.0015	26	326
Waikato Potato	45	175 BGLC	0.15	0.41	0.9879	0.0004	103	488
Waikato Dairy	34	230 YBE	0.2	0.49	0.588	0.0003	675	
Waikato Dairy	34	230 YBE	0.1	0.55	0.721	0.0007	308	
Waikato Dairy	30	230 YBE	0.2	0.49	0.5411	0.0003		
Waikato Dairy	30	230 YBE	0.1	0.55	0.63	0.0006		
Waikato Dairy	34	230 YBL	0.2	0.72	0.8279	0.0006	281	
Waikato Dairy	34	230 YBL	0.1	0.81	1.0023	0.0013	99	
Waikato Dairy	38	230 YBL	0.2	0.72	0.8935	0.0006	166	
Waikato Dairy	38	230 YBL	0.1	0.81	1.1297	0.0015	58	
Wellingtor Dairy	39	230 YBE	0.1	0.35	0.3839	0.0007	220	
Wellingtor Dairy	30	230 YBE	0.1	0.35	0.4933	0.0005		
Taranaki sheep/beet	36	230 YBL	0.1	0.37	0.9929	0.0007	102	501
Taranaki sheep/beet	36	230 YBL	0.075	0.75	0.75	0.0015	32	332
Taranaki Dairy	39	230 YBL	0.1	0.61	0.9935	0.0013	102	
Taranaki Dairy	39	230 YBL	0.75	1.41	1.7668	0.0032	0	734
Taranaki Dairy	38	230 YBL	0.1	0.61	0.962	0.0013	112	
Taranaki Dairy	38	230 YBL	0.075	1.41	1.7248	0.0031	0	986
Southland sheep/beet	21	230 YGE	0.075	0.18	0.4152	0.0003	685	
Southland sheep/beet	21	230 YGE	0.1	0.31	0.4421	0.0002		
Southland sheep/beet	21	230 YBE	0.075	0.18	4147	0.0003	875	
Otago sheep/beet	21	230 YGE	0.1	0.23	0.3974	0.0002	894	
Otago sheep/beet	21	230 YGE	0.075	0.1	0.3853	0.0002	702	
Otago sheep/beet	21	230 YBE	0.075	0.11	0.3917	0.0003	890	
Northland sheep/beet	20	230 YBE	0.075	0.31	0.4494	0.0003		
Manawatu sheep/beet	18	230 YGE	0.2	0.15	0.2479	0.0001		
Manawatu sheep/beet	18	230 YGE	0.12	0.2	0.3159	0.0001		
Manawatu sheep/beet	18	230 YGE	0.075	0.16	0.3461	0.0002		
Manawatu sheep/beet	18	230 YBE	0.15	0.12	0.2591	0.0001		
Manawatu sheep/beet	18	230 YBE	0.075	0.27	0.3793	0.0003		
Manawatu sheep/beet	18	230 YBL	0.075	0.18	0.3905	0.0004		
Hawks Baysheep/beet	20	230 YBP	0.075	0.31	0.5219	0.0005	586	
Hawks Baysheep/beet	20	230 YBE	0.075	0.31	0.4494	0.0003		

The CalBal model indicated future soil cadmium concentrations would be higher under sheep/beef farming than under dairy farming after 100 years when both are under the same fertiliser regime (Figure 23), although dairy farming requires more fertiliser for optimal production than beef and sheep farming. Dairy farming was shown to lead to more accumulation of cadmium in soil than sheep/beef farming when both are receiving more typical levels of fertiliser (50 kg ha⁻¹ y⁻¹ for dairy and 30 kg ha⁻¹ y⁻¹ for sheep/beef) (Figure 24). The sedimentation losses used by the model are oversimplified as sedimentation losses are due to a range of factors including topography, soil type, leaching class and climate, not just farm type. Table 10 shows the variation in total suspended sediment (TSS) measurements for different land-uses, topography and soil type reported in 5 publications. It appears likely the sedimentation losses used by the model are overestimated for flat land and should be adjusted. In addition, the model gave no consideration to deposition of eroded sediment from steep land to flatter land, animal relocation of cadmium through faeces or land application of dairyshed effluent.

|--|

Site Name	Farm	Topography	Soil type	$TSS (kg ha^{-1} y^{-1})$
Whatawhata Research Centre ¹	Sheep & beef	Mainly steep land	Brown and Ultic Soils, patches of Allophonic Soils	600-3212
Toenepi ^{1, 2}	Dairy	Rolling to flat	Recent and Granular Soils	142
Purukohukohu ^{1,3}	Sheep & beef	Moderately steep	Pumice Soils	22
Moutere ⁴	Pasture	Moderately steep	Brown Soils, some Recent, Podzols, Ultic, Melanic and Gley Soils	210, 320, 670, and 790
Moutere ⁴	Forestry	Moderately steep	Brown Soils, some Recent, Podzols, Ultic, Melanic and Gley Soils	40
Big Bush ⁴	Native Bush	Moderately steep	Brown Soils, some Recent, Podzols, Ultic, Melanic and Gley Soils	60–110
Pukekohe ⁵	Cropping	Rolling	Granular Soils	490-56800
Whatawhata Research Centre ⁶	Sheep & beef	steep land (tread damaged soil)	Brown Soils	1666
Whatawhata Research Centre ⁶	Sheep & beef	Easy contoured land (tread damaged soil)	Allophonic Soils	714

¹ Quinn & Stroud (2002)

² Wilcock et al. (1999)

³ Cooper & Thomsen (1988)

⁴ Basher (2003)

⁵ Basher et al. (1997)

⁶ Nguyen et al. (1998)

Peat soils accumulated more cadmium than the other soil types, YBL, YBP and BGCL soils accumulated the next largest amount of cadmium while YBE, YGE and alluvial soils accumulated the least cadmium. Differences in cadmium accumulation were due to differences in the leaching losses and soil bulk densities used by the model. The importance of soil bulk density on soil cadmium concentrations is discussed in section 3.6. The model also showed cadmium levels in soils under dairy farms fertilised at 30 kg ha⁻¹ y⁻¹, to decrease in cadmium with time once soil cadmium exceeded about 1.3 mg kg⁻¹ due to high sedimentation losses (900 kg ha⁻¹ y⁻¹). Figure 25 shows an example of this occurrence in a YBP soil under dairy farming with a fertiliser regime of 30 kg P ha⁻¹y⁻¹. The decrease should be further investigated to evaluate the accuracy of this prediction as it has implications for the long term sustainability of dairy farming.

Figure 23: Comparison of 100 years accumulation of cadmium, starting at $Cd = 0 \text{ mg kg}^{-1}$, by soil groups under dairy and sheep/beef farming (both 30 kg P ha⁻¹y⁻¹).

Figure 24: Comparison of 100 years accumulation of cadmium, starting at $Cd = 0 \text{ mg kg}^{-1}$, by soil groups under dairy and sheep/beef farming (50 kg P ha⁻¹ y⁻¹ for dairy and 30 kg P ha⁻¹ y⁻¹ for sheep and beef).

Figure 25: Soil cadmium concentrations decreasing with time in YBP soil under dairy (30 kg P $ha^{-1}y^{-1}$).

Figure 26: Soil cadmium concentrations decreasing with increased sample depth for a YBE under dairy (30 kg P ha⁻¹y⁻¹).

The CalBal model showed increasing the sampling depth effectively diluted the cadmium concentration due to mixing (Figure 26) indicating cadmium is held in the upper part of the topsoil. Cropping soils are usually regularly tilled to 20 cm allowing mixing, while pastoral soils may not be tilled after the initial seeding.

Pastoral farming resulted in increased soil cadmium content in all regions and nationally (Table 11). The peat soils of the Waikato region showed the highest potential for cadmium accumulation. The regions with the highest present day soil cadmium content also have the highest potential to accumulate cadmium in the future.

Region	Present Range	Range in 100 years assuming pastoral farming
	$(\mu g g^{-1})$	$(\mu g g^{-1})$
Auckland	0.03-1.10	0.59–1.88
Bay of Plenty	0.05-1.60	0.59–2.40
Canterbury	0.01-0.89	0.55–1.53
Gisborne	0.05-0.27	0.59–1.05
Hawkes Bay	0.05-0.63	0.56–1.59
Manawatu-	0.04-0.9	0.56–1.56
Wanganui		
Nelson-	0.03-1.00	0.58–1.65
Marlborough		
Northland	0-0.67	0.51–1.52
Otago	0.03-0.91	0.55–1.57
Southland	0.04-0.62	0.56–1.32
Taranaki	0.04-1.7	0.75–2.82
Waikato	0.03-2.52	0.58–3.47
Wellington	0.05-0.90	0.56–1.56
Westland	—	0.59–0.93
National	0-2.52	0.55–3.47

Table 11: Soil cadmium range in 100 years time after pastoral farming compared with present range

3.6 DISCUSSION OF BULK DENSITY AFFECTS ON SOIL CADMIUM LEVELS

Soil bulk density should be considered when setting maximum permitted levels and other guidelines as, without consideration of bulk density, light, fluffy soil can appear to have extremely high concentrations of cadmium compared with heavier, denser soil. For example, cadmium in soil samples near storage facilities for phosphate fertiliser can be much higher than samples from the surrounding land (Taylor & Percival 2001) and this enhancement appears exacerbated when the soil has very low bulk density as demonstrated in the case study below.

Farmers have been observed bringing in several truckloads of phosphate fertiliser and storing it in a large pile on a convenient paddock (Taylor in press, Soil News). Soil samples were collected from 2 paddocks that had recently been used for temporary storage. One soil was an organic soil and the other an allophanic mineral soil. It is assumed that the amount of cadmium transferred to the soil was similar at both sites. Soil cores were collected over a 400-m² grid (Taylor 1997) and total acid soluble cadmium measured and plotted spatially (Figure 27). The areas where most spillage and accumulation occurred can be seen to the back right of the grids.

Figure 27a: Cadmium concentrations in an organic soil from a paddock previously used to store phosphate fertiliser.

Figure 27b: Cadmium concentrations in an allophanic Soil from a paddock previously used to store phosphate fertiliser.

Total acid extractable cadmium concentrations were higher in the organic soil than those in the allophanic soil and may be explained by difference in bulk density (Table 12). Without consideration of bulk density, the organic soil appeared to have much higher cadmium concentrations compared to the allophanic soil. However, when converted onto a volumetric basis, the organic soil appeared to have similar concentrations of cadmium to the allophanic one (Table 12).

	Present average Cd	Present range of Cd	Bulk Density				
	$(mg dm^{-3})$	$(mg dm^{-3})$	$(g \text{ cm}^{-3})$				
Organic Soil	1.0	0.5-1.4	0.11				
Allophanic soil	1.0	0.8-1.3	0.74				

Table 12: Cadmium in soil on a volumetric basis

Cadmium concentration data on peat, organic and other light soils should therefore be assessed after conversion to a volumetric basis to account for bulk density.

Soil bulk density should also be considered when setting maximum permitted levels and other guidelines so that standards and guidelines are practical, achievable and enforceable. One practical way of incorporating bulk density would be to normalise gravimetric measurements to the same soil density – say 1 g cm⁻³.

3.7 A NATIONAL SAMPLING AND ANALYSIS SCHEME

Nationally consistent methodology for sampling, analysis and mechanisms to identify and record soil contamination by cadmium is needed as there is currently a mixture of different methodologies and guidelines used by practitioners in New Zealand leading to confusion for investigators and inconsistent interpretation of the resulting data.

The size of the sampling and analysis scheme will depend on the precision required. Fewer samples are needed to allow statements about means that the amount 90% of soil area is below than about means that the amount 95% of soil area is below. Claiming that all New Zealand soil cadmium concentrations were below a given value may be problematic if proved incorrect, e.g. claiming all New Zealand agricultural soil cadmium levels were below, say, 3 mg kg⁻¹ would be incorrect due to "hotspots" caused by specific instances of contamination and may tarnish our international image as clean and green.

An overseas example is provided by the Nation Soil Inventory (NSI) of England and Wales. This study provided a comprehensive dataset including site and soil information at 5-kilometre intervals across England and Wales. The information was collected by way of a grid survey and for each grid intersect provides detailed information on the site, the soil profile and a range of inorganic topsoil analyses including cadmium and other potential contaminants. The strengths of the NSI are:

- Well-documented protocols for field and laboratory sampling. These are essential to maintain continuity and comparability between the sampling dates
- Baseline data from field observations on site and profile parameters, e.g., slope, land use and texture, horizon thickness, depth to water table and impermeable layer
- Baseline laboratory data on soil characteristics- particle size distribution
- Wide range of nutrient and heavy metal analyses
- The ability to produce robust statistics for different levels of aggregation, e.g., England and Wales (together and separately) and English regions.

These strengths were enhanced by a further re-sampling of the sites to give national and regional trends of soil health across the whole range of land use.

The overall cost of such a survey in New Zealand, and who is responsible for carrying it out and managing the resulting database in New Zealand needs careful consideration. A national government agency, such as MfE or Landcare Research, could be the lead agency due to the size and nature of the project. Existing databases and how these could be incorporated into a national database should be considered to minimise cost and maximise time efficiency. An example of an existing project that could be extended is the Carbon Monitoring System established by the Ministry for the Environment and Landcare Research. It provides a potential mechanism to obtain samples as a national 8-km sampling grid has been established. To date, about 400 soil samples have been collected from 20 by 20-m plots, mainly from indigenous forest and shrubland, analysed for carbon and archived in a soils database. Samples from a much wider range of land uses would need to be collected and analysed for cadmium.

To increase affordability, costs could be spread over a number of years, e.g. 20% of samples collected each year for 5 years, or a less intense survey on a larger scale grid may be more appropriate. Making use of independent knowledge of soil types, land-use, etc., allows a much more efficient sampling process. Sites should be based on a matrix of land-use type and soil order and modified by the area of the combination in each region. Most, but not all soil orders are directly influenced by climate so climate should also be considered for those orders where climate is not expressed. e.g., Gley and Recent Soils. Using these as strata in a stratified random sampling scheme would make the precision per sample higher (possibly much higher) than the British scheme. If cadmium is considered a measure of cumulative intensity of land use then such a survey will also be relevant to other lands use intensity effects, although a scheme optimal for cadmium may not be optimal for another soil property. However, all estimates would be unbiased and would have known precision. Soils should be classified to the soil order level, using the New Zealand soil classification (Hewitt 1998) to allow identification of soilcontaminant relationships. The quantity and pattern of soil contamination vary greatly and are affected by soil type, topography, fertilisation history, erosion/deposition, climate and other factors (Mallarino & Wittry 2001). While the Ministry for the Environment in New Zealand has produced guidelines for soil sampling (MFE 2004), these guidelines are more suitable for identifying hot spots than for obtaining a representative sample of an area and the following modifications should be made for a national cadmium study.

From each sampling area, take at least one composite soil sample made up of 25 cores, 0–10 cm depth, taken using a grid-point method (Schipper & Sparling 2000). This is a traditional approach used by Regional Councils to collect representative samples in soil quality studies. The 25 core samples are needed to cope with within-paddock variability, which can be considerable, especially in uncultivated land. The 0–10 cm soil sampling depth is more suitable for pastoral land than ploughed land as ploughing is generally conducted to 20-cm depth. If finance permits, the 10–20 cm depth should also be sampled. Cores should be bulked, mixed, air-dried and sieved <2 mm. The sampling area may be any shape as long as a representative sample for that area is obtained. Location should be accurately recorded using a global positioning system. Other site information recorded at each site should include the land owner or manager or local contact person, soil type and drainage class, farming practice, both current and historic, vegetation, topography, parent material, climate, and sources of contamination (fertiliser storage areas, roads, industrial facilities etc.) and their location to the prevailing wind.

To allow comparability between results from different laboratories, analysis for total cadmium should be carried out after a strong acid digestion. Cook et al. (1997) reported on an interlaboratory comparison of 20 different digestion methods. Excellent comparability was achieved for the results of strong acid digestion. The high degree of agreement between the metal concentrations in the digested samples indicates relatively low variability of extraction efficiency amongst the different strong acids. Kovacs et al. (1996, 2000) developed a method based on HNO₃-H₂O₂ digestion which is used by Landcare Research and Lincoln University. The advantages of this method include avoidance of dangerous acids (carcinogenic HF and explosive HClO₄) and avoidance of acids which reduce the lifetime of analytical equipment (HF and HCl). The parameters of the method are: 1 g dry weight of soil, 5mL HNO₃ as the digestion acid; predigest in a block digest apparatus at 60° C for 30 minutes or overnight at room temperature; addition of 5 mL 30% H₂O₂, digest at 120° C for 4.5 h; make to 50 ml with ultrapure water; filter.

For international credibility, measurement of contaminants should be carried out by a New Zealand accredited laboratory using flame or flameless atomic absorption spectrometry, graphite furnace atomic absorption spectrometry or inductively coupled emission mass spectroscopy.

4. Conclusions

- 1. Sites with land-uses such as reserve, tussock, bush, indigenous forest and plantation forestry or described as unfertilised may be considered background and are suitable for assessing soil cadmium baseline concentrations
- 2. The national average soil cadmium concentration measured in the database was 0.35 μ g g⁻¹ and the national average baseline soil cadmium value was 0.16 μ g g⁻¹
- 3. Cropping, pasture and horticulture land-uses all had higher concentrations of cadmium in soil than background landuse indicating accumulation of cadmium in these soils
- 4. Horticulture land-uses had the highest average soil cadmium concentration (0.50 μg g⁻¹) indicative of high fertiliser use or some other localised contamination source. Samples classified as berries (0.68 μg g⁻¹), kiwifruit (0.71 μg g⁻¹) and orchards (0.66 μg g⁻¹) contained soils double or nearly double the national average of 0.35 μg g⁻¹ reflecting high inputs of fertiliser or some other source of cadmium contamination. Although market gardening had an average soil

cadmium concentration of 0.46 μ g g⁻¹, it had the greatest range of values and had more data points outside the 95 and 5 percentiles than the other farm types

- 5. Pastoral land-uses had the highest individual soil cadmium value (2.70 μ g g⁻¹). Dairying showed the highest average soil cadmium concentrations (0.73 μ g g⁻¹), averaging double the national average of 0.35 μ g g⁻¹. Dairying also showed the largest number of data points outside the 95 and 5 percentiles for the pasture landuse, reflecting the wide range of cadmium values measured. Average values for beef farming and all drystock were slightly above (0.42 μ g g⁻¹ and 0.40 μ g g⁻¹ respectively) and sheep farming slightly below (0.33 μ g g⁻¹) the national average
- 6. Soils where tobacco was grown were more elevated in cadmium $(0.34 \ \mu g \ g^{-1})$ than other cropping soils. These soils will now have other land-uses as tobacco is no longer grown in New Zealand. Cropped soils appear to be mostly below the national average of 0.35 $\mu g \ g^{-1}$ for cadmium, however, these soils are tilled to a greater depth (200 cm) than other land-uses and dilution decreases the cadmium concentration
- 7. The data in the database was tested for representativeness by comparing topsoil total-cadmium concentrations and associated metadata with LCDB2 vegetation class and the number of sites per 100 square km calculated. Depleted tussock grassland, tall tussock grassland and sub-alpine shrubland are relatively poorly represented with number of sites per 100 square km less than 0.04. However, further sampling based on vegetation class is not required as the main farming vegetation classes are adequately covered
- 8. The region with the highest average cadmium concentration was Taranaki (0.66 μ g g⁻¹). Other regions with cadmium concentrations above the national average include Waikato (0.60 μ g g⁻¹) and Bay of Plenty (0.52 μ g g⁻¹). Dairy farming with high fertiliser use is traditional in these areas and likely to be the cause for the elevated levels. The regions with the lowest cadmium average concentrations were Canterbury (0.18 μ g g⁻¹), Gisborne (0.20 μ g g⁻¹), Manawatu-Wanganui (0.17 μ g g⁻¹), Nelson-Marlborough (0.23 μ g g⁻¹), Otago (0.20 μ g g⁻¹), Southland (0.20 μ g g⁻¹) and Wellington (0.20), all historic sheep farming areas.
- 9. Results from running the data from the database through the FMRA CadBal model showed:
 - a. Pastoral farming resulted in increased soil cadmium content in all regions
 - b. Regions with the highest present day soil cadmium content also have the highest potential to accumulate cadmium in the future
 - c. Peat soil apparently has the greatest potential to accumulate cadmium from fertiliser
 - d. BGCL, YBL and YBP soils accumulated higher amounts of cadmium than alluvial, YBE and YGE soils, which accumulated the least cadmium. Gley soils were intermediate. Differences in soil type cadmium accumulation appear due to differences in the assumed leaching losses and soil bulk densities input to the model
 - e. Increasing the sampling depth effectively diluted the cadmium concentration
 - f. Sheep/beef farming lead to more accumulation of cadmium than dairy when both are under the same fertiliser regime. Accumulation under dairy is higher when both are under their respective optimal fertiliser schemes
 - g. Cadmium levels in soils under dairy farms receiving 30 kg P ha⁻¹y⁻¹ or less appear to decrease with time once soil cadmium exceeded about 1.3 mg kg⁻¹
- 10. Weaknesses identified in the CadBal model include:
 - a. The model is based on the New Zealand Genetic Soil Classification which has been superseded
 - b. The model was not calibrated for many recent soils, podzols, rendzinas or intergrades between soil types
 - c. The sedimentation loss figures used in this analysis by the model are oversimplified as sedimentation losses are due to a range of factors including topography, soil type, leaching class and climate, not just farm type

- d. Cadmium leaching figures for different soil groups are assumed to be independent of location and climate
- e. A default "zero" leaching figure was used for alluvial soils
- f. No consideration is given in the model to accumulation of erosion debris
- g. The model assumes atmospheric deposition of cadmium is constant across the whole country
- h. No consideration is given to animal relocation of cadmium through faeces or land application of dairyshed effluent
- 11. When soil bulk density is not considered, organic soil can appear to have extremely high cadmium levels compared to mineral soil.

5. Specific Recommendations

- 1. There were few samples with associated landuse data for soils utilised for cropping by crop type. Other specific landuses with few samples include horse, deer and vineyards. Further samples should be obtained from these landuses from across the country and analysed for cadmium following the sampling and analysis scheme included in this report to improve the representativeness of the dataset. Details regarding current and historical crop type should be collected simultaneously where possible
- 2. To increase confidence in the regional ranges and averages, further sampling following the sampling and analysis scheme included in this report, to 50 samples per region is recommended in regions with low numbers of samples. These regions include Gisborne, Nelson-Marlborough, Northland and Westland
- 3. Cadmium concentration data on peat, organic and other light soils should be assessed after conversion to a volumetric basis to account for bulk density
- 4. The results from the CadBal model could be improved to more accurately portray sediment, erosion and leaching losses and include deposition of erosion debris. The sedimentation losses used by the model appear overestimated. The apparent decrease in soil cadmium predicted by the model for dairy farms receiving 30 kg P ha⁻¹y⁻¹ should be tested in a field study
- 5. The CadBal model should also be calibrated using the currently used New Zealand soil classification (Hewitt, 1993) and include all soil orders
- 6. A national soil inventory including site and soil information at 8-kilometre intervals across New Zealand should be carried out. Sampling priority would be given to sites with intensive land use. The information should be collected by way of a grid survey and each sample point should be georeferenced and accessory data collected on the landform, slope, current land use, soil classification, profile characteristics, and a range of contaminants including cadmium and other potential contaminants analysed. The Carbon Monitoring System (MfE and Landcare Research) provides a mechanism by which some of this sampling regime could be carried out. Soil samples should be extracted using a strong acid digestion procedure and analysed using graphite furnace atomic absorption spectrometry or inductively coupled emission mass spectroscopy by a New Zealand accredited laboratory.

6. General Recommendations

1. Soil bulk density should be considered when assessing soil contamination, especially when setting maximum permitted levels and other guidelines as soils of low bulk density can appear to have extremely high contaminant concentrations compared to soil of high bulk density

2. Future soil samples should also be analysed for other potential contaminants such as fluorine.

7. ACKNOWLEDGEMENTS

To MAF for funding, to Gerald Rys (MAF), Bob Longhurst (AgResearch), Sally Gaw (ESR), David Hawke (Christchurch Polytechnic), Mike Hedley and P. Loganathan (Massey University), Sam Weiss and Amy Taylor (EBOP), Nick Kim (EW), GWRC and ECAN for supplying data. To Brian Daly and Linda Hill (Landcare Research and Terry Cooney (Hill Laboratories) for helpful discussion on chemical analysis methodology.

8. **REFERENCES**

Andrewes P, Town RM, Hedley MJ, Logonathan P 1996. Measurement of plant-available cadmium in New Zealand soils. Australian Journal of Soil Research 34: 441–452.

Basher LR 2003. The Motueka and Riwaka catchments. Landcare Research, Lincoln.

Basher LR, Hicks DM, Handyside B, Ross CW 1997. Erosion and sediment transport from the outdoor vegetable production lands at Pukekohe. New Zealand Journal of Hydrology 36:73–95.

Cook JM, Gardener MJ, Griffiths AH, Jessep MA, Ravenscroft JE, Yates R 1997. The comparability of sample digestion techniques for the determination of metals in sediments. Marine Pollution Bulletin 34: 637–644.

Cooper AB, Thomsen CE 1988. Nitrogen and phosphorus in streamwaters from adjacent pasture, pine and native forest catchments. New Zealand Journal of Marine and Freshwater Research 22: 279–291.

Gaw SK, Wilkins AL, Kim ND, Palmer GT, Robinson P 2005. Trace element and Σ DDT concentrations in horticultural soils from the Tasman, Waikato and Auckland regions of New Zealand. Science of the Total Environment 355: 31–47.

Grey CW, McLaren RG, Roberts AHC 2003a. Cadmium leaching from some New Zealand pasture soils. European Journal of Soil Science, 54: 159–166.

Grey CW, McLaren RG, Roberts AHC 2003b. Atmospheric accessions of heavy metals to some New Zealand pastoral soils. The Science of the Total Environment 305: 105–115.

Harrow G, Hawke DJ, Holdaway RN 2006. Surface soil chemistry at an alpine procellariid breeding colony in New Zealand, and comparison with a lowland site. New Zealand Journal of Zoology 33: 165–174.

Hawke DJ 2003. Cadmium distribution and inventories at a pre-European seabird breeding site on agricultural land, Banks Peninsula, New Zealand. Australian Journal of Soil Research 41: 19–26.

Hawke DJ, Holdaway RN, Causer JE, Ogden S 1999. Soil indicators of pre-European seabird breeding in New Zealand at sites identified by predator deposits. Australian Journal of Soil Research 37: 103–113.

Hewitt AE 1998. New Zealand Soil Classification. Landcare Research Science Series No. 1. 2nd Edition. Manaaki Whenua Press, Lincoln.133 p.

Kovacs B, Prokisch J, Gyori Z, Kovacs AB, Palencsar AJ 2000. Studies on soil sample preparation for inductively coupled plasma atomic emission spectrometry analysis. Communications in soil science and plant analysis 31: 1949–1963.

Kovacs B, Gyori Z, Prokisch J, Loch J, Daniel P 1996. A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Communications in soil science and plant analysis 27: 117–1198.

Loganathan P, Hedley MJ 1997. Downward movement of cadmium and phosphorus from phosphatic fertilisers in a pasture soil in New Zealand. Environmental Pollution 95: 319–324.

Loganathan P, Louie K, Lee J, Hedley MJ, Roberts AHC, Longhurst RD 1999. A model to predict kidney and liver cadmium concentrations in grazing animals. New Zealand Journal of Agricultural Research 42: 423–432.

Loganathan P, MacKay AD, Lee J, Hedley MJ 1995. Cadmium distribution in hill pastures as influenced by 20 years of phosphate fertilizer application and sheep grazing. Australian Journal of Soil Research 33: 859–871.

Loganathan P, Hedley MJ, Gregg PEH, Currie LD 1997. Effect of phosphate fertiliser type on the accumulation and plant availability of cadmium in grassland soils. Nutrient Cycling in Agroecosystems 47: 169–178.

Mallarino A, Wittry D 2001. Management zones soil sampling: a better alternative to grid and soil type sampling. 13th annual Integrated Crop Management Conference. 5–6 December 2001, Iowa State University Extension, Ames IA, USA, pp. 159–164.

Ministry for the Environment 2004. Site investigation and analysis of soils. Contaminated Land Management Guidelines No. 5. Ministry for the Environment, Wellington. 85 p.

Quinn JM, Stroud MJ 2002. Water quality and sediment and nutrient export from New Zealand hill-land catchments of contrasting land use. New Zealand Journal of Marine and Freshwater Research 36: 409–429.

Roberts AHC, Longhurst RD 1997. A cadmium balance model for New Zealand agricultural systems. In: Iskandar IK, Hardy SE, Chang AC, Pierzynski GM eds Extended extracts. 4th International Conference on Biogeochemistry of Trace Elements 1997. Pp. 107–108.

Roberts AHC, Longhurst RD, Brown MW 1994: Cadmium status of soils, plants, and grazing animals in New Zealand. New Zealand Journal of Agricultural Research 37: 119–129.

Schipper LA, Sparling GP 2000. Performance of soil condition indicators across taxonomic groups and land uses. Soil Science Society of America, Journal 64: 300–311.

Taylor MD 1997. Accumulation of cadmium derived from fertilisers in New Zealand soils. The Science of the Total Environment 208: 123–126.

Taylor MD, Percival HJ 2001. Cadmium in Soil Solutions from a Transect of Soils away from a Fertiliser Bin. Environmental Pollution 113: 35–40.

Wilcock RJ, Monaghan RM, Quinn JM, Campbell AM, Thorrold BS, McGowan AW, Betteridge K 2006. Land-use impacts and water quality targets in the intensive dairying catchment of the Toenepi Stream. New Zealand. New Zealand Journal of Marine and Freshwater Research 40: 123–140.

Wilcock RJ, Nagels JW, Rodda HJE, O'Connor MB, Thorrold BS, Barnett JW 1999. Water quality of a lowland stream in a New Zealand dairy farming catchment. New Zealand Journal of Marine and Freshwater Research 33: 683–696.

Zanders JM, Hedley MJ, Palmer AS, Tillman R,W, Lee J 1999. The source and distribution of cadmium in soils on a regularly fertilised hill-country farm. Australian Journal of Soil Research 37: 667–678.