

Development of a framework for estimating nitrous oxide emissions from fertiliser use on different slope pasture classes

Final Report MPI Agreement number 20151224

MPI Technical Paper No: 2016/.....(MPI will assign number)

Prepared for Joel Gibbs, Policy Analyst, Information & Analysis, Resource Policy, Policy & Trade, Ministry for Primary Industries, Wellington

by Surinder Saggar and Donna Giltrap, Landcare Research; Rob Davison Beef + Lamb NZ; Jiafa Luo and Mike Rollo, AgResearch

ISBN No: ISSN No:

March 2016

New Zealand Government

Growing and Protecting New Zealand

Disclaimer

While every effort has been made to ensure the information in this publication is accurate, the Ministry for Primary Industries does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information.

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

Reviewed by:

This publication is also available on the Ministry for Primary Industries website at <u>http://www.mpi.govt.nz/news-resources/publications.aspx</u>

© Crown Copyright - Ministry for Primary Industries

Landcare Research
Portfolio Leader – Mitigating Greenhouse Gases
Surinder Saggar

Approved for release by:

Contents

Executive Summary		1
1	Introduction	2
2	Objectives	3
3	Methodology	4
4	Results	11
5	Conclusions	13
6	References	14

Page

Appendix 1 – Selected data from Sheep and Beef Farm Survey data		15
	- Formulae for calculating direct N_2O emissions from Sheep + B	-
fertiliser		26
Appendix 3 -	- Response to the comments from External Reviewer	27
Appendix 4	Response to the comments from MPI	32

Executive Summary

Estimates of New Zealand's greenhouse gas (GHG) emissions from the agricultural sector are generated by the Ministry for Primary Industries (MPI), which has developed a mathematical model, called the Agricultural Inventory Model (the Inventory), that calculates the amount of GHG emissions from agricultural activities. Part of the Inventory involves estimating nitrous oxide (N₂O) emissions arising from the application of fertiliser nitrogen (N) at the Tier 1 level, using a single EF1 value irrespective of slope. The inventory currently differentiates between urea and other N fertilisers for which the EF1 values are 0.48% and 1% respectively, from trials on flat pastoral land.

In New Zealand, however, a significant proportion of agricultural activity occurs on sloped land. Nitrous oxide emissions from steeper slopes are lower than emissions from flatland (Hoogendoorn et al. 2013; Kelliher et al. 2014; Luo et al. 2013, 2016). Using the New Zealand-developed N₂O emission factors from the dung and urine of ruminant animals (sheep, beef cattle, and deer) deposited across different slope classes, Saggar et al. (2015) generated estimates of direct N₂O emissions from sheep, beef and deer that were 52% lower than the estimates generated using current Inventory emission factors . In the same way therefore, New Zealand's N₂O emissions from fertiliser N applied on slopes could be overestimated in the current Inventory.

The aim of this study was to develop a framework for estimating N_2O emissions from N fertiliser use on pasture on different slope classes that would eventually be incorporated into the Agricultural Inventory Model and help to ensure that New Zealand's emissions estimates are as accurate as possible.

In this study we used data provided by Beef + Lamb New Zealand from their annual survey of beef and sheep farms. These data included the land area classified as low (<12°), medium (12–24°), and high (>24°) slope. The total fertiliser N applied to pastures on New Zealand sheep and beef farms varied between 8% and 25% of the total fertiliser N use in New Zealand during 1990–2013. The EF₁ values for urea on medium and high slopes were estimated using the current low slope value of 0.48% from the National Inventory (Ministry for the Environment 2015) reduced by the same proportion as had been measured in urine EF₁ values on medium and high slopes. The resulting estimated EF₁ values for urea for low, medium and high slope were 0.48%, 0.11% and 0.014%, respectively. Due to lack of data on the type of fertiliser N used it was assumed that all fertiliser N was applied as urea. However, assuming that the relative change in EF₁ with slope is the same for all fertiliser N types, this should not affect the relative change in N₂O emissions compared to using a single EF₁ value across all slopes. The allocation of fertiliser N to each slope class was calculated for each region and farm type, and then multiplied by the appropriate EF₁ for low, medium and high slopes, respectively, to calculate the amount of N directly emitted as N₂O.

Using a single EF₁ of 0.48% across all slopes resulted in an estimate of direct N₂O emissions of 20.7 Gg CO₂e from fertiliser N applied to sheep and beef farm pastures in 1990 rising to 86.7 Gg in 2013. Accounting for the lower emissions from medium and high slopes produced estimated N₂O emissions of 8.3 Gg in 1990 and 30.5 Gg in 2013. Thus, over the period 1990–2013, the use of revised EF₁ values based on slope classes' reduced estimated N₂O emissions from total fertiliser N applied to pastures on sheep and beef farms by between 60% and 65%, compared with using a single flatland EF₁ value. In 2013 this was equivalent to a reduction of 0.14% in the total greenhouse gas emissions from the agricultural sector.

1 Introduction

It is mandatory for New Zealand to report its annual greenhouse gas (GHG) emissions to the United Nations Framework Convention on Climate Change (UNFCCC) under the UNFCCC and the Kyoto Protocol. Countries are encouraged to improve the transparency, accuracy, comparability, consistency, and completeness of their emissions estimates and reporting. This can be achieved by carrying out research and determining country-specific information, enabling the use of country-specific emission factors and fractions rather than default Intergovernmental Panel on Climate Change (IPCC) values.

New Zealand's GHG emissions from the agricultural sector are generated by the Ministry for Primary Industries (MPI), which has developed a mathematical model, called the Agricultural Inventory Model (the Inventory), to calculate the amount of GHG emissions from agricultural activities.

Part of the Inventory involves estimating nitrous oxide (N2O) emissions arising from the application of fertiliser nitrogen (N) at the Tier 1 level, using a single EF1 value irrespective of slope. The inventory currently differentiates between urea and other N fertilisers for which the EF1 values are 0.48% and 1% respectively, from trials on flat pastoral land. In New Zealand, however, a significant portion of agricultural activity occurs on sloped land. As emissions from steeper slopes are likely to be lower than emissions from flatland, New Zealand's N₂O emissions from fertiliser could be overestimated in the Inventory.

As an example, Saggar et al. (2015) recently used New Zealand-developed N_2O emission factors for dung and urine of ruminant animals deposited across different slope classes to estimate N_2O emissions from excreta deposited on New Zealand's sheep, beef and deer farms. These estimated N_2O emissions were 52% lower than estimates made using the current Inventory emission factor, developed from trials on flat pastoral land. The improved methodology is transparent and complete, and will improve accuracy of emission estimates.

Saggar et al (2015) also estimated that about 8.6 m ha of New Zealand hill land receives about 20% of the fertiliser N applied annually in New Zealand, and approximately 80% of this is applied to medium- and high-slope areas which are likely to have significantly lower EF_1 values than flat or low-slope areas. The current New Zealand-specific emission factors for estimating N₂O emissions from fertiliser N (EF_1) were developed on flat pastoral land, and are 0.48% for urea-N and 1.00% for all other forms of N fertiliser. By using these emission factors across all land slope classes it is probable that N₂O emissions from fertiliser applied to New Zealand hill country are being over-estimated.

Recognising this, Landcare Research was contracted to undertake a desk study to develop a framework for estimating N_2O emission factors from fertiliser use (EF₁) on different slope pasture classes, which would potentially be incorporated into the Agricultural Inventory Model and help ensure that New Zealand's emissions estimates are as accurate as possible.

2 Objectives

- To calculate the annual amounts of fertiliser nitrogen (fertiliser N input) applied to different hill slope categories (low (<12°), medium (12–24°), and high >24°) from 1990 to 2013 using the Beef +Lamb NZ Economic Survey data, including documentation of the limitations and uncertainty of these data.
- To develop a scientifically robust and easily implementable methodology for calculating nitrous oxide (N₂O) emissions from fertiliser N using values estimated N₂O EF₁ on different slope categories, based on the latest flat pastoral land EF₁ values used in the Inventory [0.48% for urea-N and 1.00% for all other forms of N fertiliser as obtained from MPI].
- To provide advice, consistent with IPCC good practice guidance, on how this methodology could be incorporated into MPI's Agricultural Greenhouse Gas Inventory Model.

2.1 Expected outcomes

- 1. A spreadsheet containing values for the amounts of fertiliser N applied to different hill slope categories from 1990 to 2014.
- 2. A report that describes a valid approach/methodology for calculating N₂O emissions from N fertiliser applied on hill land slopes including advice, consistent with IPCC good practice guidance, on how the methodology could be incorporated into MPI's Agricultural Inventory Model.

3 Methodology

3.1 Data sources etc.

For this study, we used data provided by Beef + Lamb New Zealand from their annual survey of Sheep and Beef Sheep Farms. The population of commercial farms for the annual survey is drawn from Statistics NZ (SNZ) Agricultural Census/Survey database and are allocated into eight classes (plus non-commercial), five regions, and three slope categories: low (<12° slope), medium (12–24° slope), and high (>24° slope) based on individual farm data characteristics and location that imply Farm Class and their management systems. The farm classes represent different types of farm enterprises that typically have different proportions of low, medium, and high slope land area, and are randomly selected by SNZ from the Sheep and Beef Farm population to bring into Beef + Lamb New Zealand's Sheep and Beef Farm Survey. Farms entering the Survey have their farm Class verified from the on-farm inspection.

The Sheep and Beef Farm Survey fertiliser "products" for each farm are recorded by their elemental content:

e.g., Urea N 46%, DAP (Di-ammonium phosphate) Sulphur Super N 10.8% and Ammonium Sulphate (AS) N 21%

10 tonnes urea at 46%	=4,600 kg N
10 tonnes DAP S at 10.8%	=1,080 kg N
10 tonnes AS at 21%	=2,100 kg N
Total N Fertiliser applied	=7,780 kg N

Each farm in the Survey is visited once per year in the Survey process. Fertiliser data are captured from invoices on a standard June ending year basis. The invoices verify the actual brand and volume from which the elemental kg content is derived. Farmer input determines the volumes used on pasture and volumes used on crop. Farmers in the Survey are provided a diary to record this specific information. These data also included the total¹ amount (but not type) of fertiliser N applied to pastures on New Zealand sheep and beef farms. The aim of this study was to quantify emissions from fertiliser applied to sheep, beef and deer pastures. The fertiliser N applied to crops on sheep and beef farms was not included. This could include fodder crops or other commercial crops (e.g. in a mixed farming system).

Data were provided for the years ended 30 June 1990 to 30 June 2014² and were broken down by region and farm type. The average distribution of land between the three slope categories was given for each region and farm type based on survey data. Figure 1 displays the five regions and Table 1 shows the five regions and eight farm types used in the annual

¹ Beef + Lamb scaled their survey results so the totals matched the Statistics New Zealand Agricultural Production survey values

² Data for the year ended 30 June 2015 were not available at the time of writing

survey data. The actual land areas by slope class, region and farm type for each year are given in Appendix 1 (Table 5). There was also a small amount of fertiliser N used on 'non-commercial' farms in each region. Fertiliser use on non-commercial farms accounted for 2 to5% of the total and was accounted for by assuming non-commercial farms had the mean slope distribution for their region.

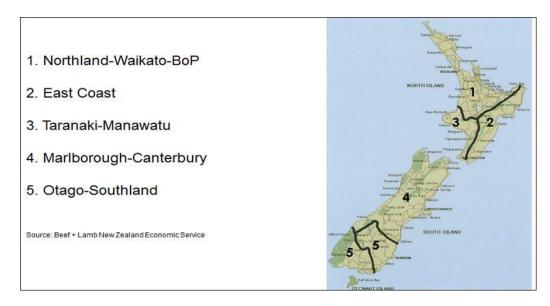


Figure 1: Five Regions used in Beef+Lamb New Zealand annual survey

Table 1: Region and farm type classifications used in Beef+Lamb New Zealand annual survey
data

Region	Farm Types
Northland-Waikato-Bay of Plenty	North Island Hard Hill Country North Island Hill Country North Island Intensive Finishing
East Coast	North Island Hard Hill Country North Island Hill Country North Island Intensive Finishing
Taranaki-Manawatu	North Island Hard Hill Country North Island Hill Country North Island Intensive Finishing
Marlborough-Canterbury	South Island High Country South Island Hill Country South Island Finishing Breeding South Island Mixed Finishing
Otago-Southland	South Island High Country South Island Hill Country South Island Finishing Breeding South Island Intensive Finishing

The total amount of fertiliser N applied to sheep and beef farm pastures was calculated by Beef + Lamb New Zealand, based on the average application rate for each farm type and region, multiplied by the pasture land area. The total amount of N applied to sheep and beef farm pastures is compared to the national amount in the inventory calculation for total N

fertiliser use (which includes cropping and dairying) in Table 2. Note that the Beef + Lamb New Zealand data were converted to calendar years by taking the average of consecutive July–June years (e.g. 1990 calendar year is the average of July 1989–June 1990 and July 1990–June 1991 values). This means that 2013 is the last year for which a calendar year value can be determined, as the July 2014–June 2015 data were not available at time of writing.

Year	Fertiliser N applied to sheep and beef farm pastures over each calendar year	Total New Zealand fertiliser N use (MfE) (tonnes)	Sheep and beef pasture fertiliser N as a percentage of national fertiliser N use
	(tonnes) ³		
1990	9,207	59,265	16%
1991	10,969	61,694	18%
1992	17,642	70,122	25%
1993	24,214	104,095	23%
1994	23,420	124,131	19%
1995	22,187	151,263	15%
1996	23,553	153,780	15%
1997	26,563	143,295	19%
1998	32,112	155,467	21%
1999	33,480	166,819	20%
2000	34,264	189,096	18%
2001	41,122	248,000	17%
2002	55,913	309,200	18%
2003	59,554	337,400	18%
2004	63,084	348,000	18%
2005	66,270	350,320	19%
2006	55,014	329,700	17%
2007	43,384	315,920	14%
2008	29,451	328,157	9%
2009	27,703	279,752	10%
2010	31,922	332,981	10%
2011	28,610	360,284	8%
2012	32,088	362,508	9%
2013	38,576	366,600	11%

Table 2: Total fertiliser N application to sheep and beef farm pastures compared to total fertiliser N use. Data from Beef + Lamb New Zealand and National Inventory Report (Ministry for the Environment, 2014)

Appendix 1 contains a complete breakdown of land area by region, year, farm type, and slope class (Table 5) as well as fertiliser application by year, region and farm type (Table 6). This information was supplied by Beef + Lamb New Zealand from their economic survey data.

The data on the quantities of N fertilisers used in New Zealand in 2014 (sourced from Statistics New Zealand and provided by Prof Russ Tillman) (Table 3) demonstrate that

³ Calendar year amounts were calculated by taking the average of consecutive July-June year values from Table 3.

throughout New Zealand the weight of N applied as urea is over 8 times larger than the amount of N applied as DAP. Thus urea is the dominant N fertiliser used in New Zealand.

Table 3: Quantities of nitrogen fertilisers used in New Zealand in 2014 (sourced from Statistics	
New Zealand)	

Fertiliser	Weight of Fertiliser (tonnes)	Weight of Nitrogen (tonnes)
Urea	533,373	250,685
Ammonium Sulphate	59,846	12,567
DAP	166,924	30,046

Fertiliser form (urea vs ammonium-based vs nitrate-based fertiliser) can also influence the N_2O emissions. For example, Smith et al. (1997) suggested that when soil conditions favour denitrification, nitrate fertilisers produce higher emissions, whereas in dry conditions emissions from urea or ammonium-based fertilisers were higher. Kuikman et al. (2006) analysed N_2O measurements taken across the Netherlands, and concluded that N_2O emissions were greater from nitrate -based fertilisers than from ammonium-based fertiliser and urea due to the former providing a more readily available mineral N pool for denitrification. Smith et al. (2012) reported on a UK-wide series of field experiments comparing N fertiliser forms, where there was evidence of lower emissions from urea. This may have also been partly due to losses of NH₃ following rapid urea hydrolysis, which can reduce the net amount of N remaining in the soil as a potential source of N_2O (van der Weerden et al., 2016).

In the absence of any activity data on the form of fertiliser N applied on hill country farms, we have assumed that all N fertiliser was applied to pasture as urea. From the discussions with Fertiliser representatives (Ants Roberts, Ravensdown and Aaron Stafford, Ballance Agri-Nutrients Pers. Comm.), we understand that it is highly likely that DAP is used on fodder crops on the low slopes but also on slopes where farmers are undertaking hill country cropping. However, in some areas in some years DAP will also be the fertiliser of choice to be spread on hill country pastures depending on the price relativity between DAP (sometimes with S added) and super/urea mixes. Very little AS is generally applied to forage crops grown on hill slopes, but this was not included in our sheep and beef pasture fertiliser N estimates. In either case, the relative reduction in N_2O emissions due to accounting for slope should remain the same assuming that all types of N fertiliser have the same relative reduction in EF_1 for high and medium slopes.

3.2 Emission factor (EF₁) values

Kelliher et al. (2014) performed a statistical analysis of New Zealand field trial data of nitrous oxide emissions from pasture. The best estimate for the emission factor for urea fertiliser based 22 field trials in New Zealand was 0.48 ± 0.13 %. A later study by van der Weerden et al. (2016) measured N₂O emissions from urea applications at four sites. The mean emission factors for each site varied from 0.03% to 1.52% with an average of 0.51%. A weighted average of the results from Kelliher et al. (2014) and van der Weerden et al. (2016) gave an EF₁ value of 0.48%, the same as the value currently used in the National Inventory.

However, all these trials were conducted on flat land and, based on the results for urine we expect emission factors to decrease with slope. To estimate the reduction in EF_1 on medium and high slopes we assumed that the reduction in emission factors for urea with slope would

be the same as for urine because the initial chemical form of N in urine is similar to that in urea fertiliser. However, this will need to be verified experimentally, as there have been no field studies on this, either in NZ or overseas. Table 4 shows the emission factors for sheep and beef urine. The low-slope values are those recommended by Saggar et al. (2015) for hill country (which in turn were based on Kelliher et al. 2014). The medium-slope values combine new measurements from Luo et al. (2016) with the recommendations from Saggar et al. (2015). The high-slope values are from the field trials of Luo et al. (2016).

N Source	Slope	EF (%)	EF relative to low slope
Beef Urine	Low	0.99	1
	Medium	0.19	0.19
	High	0.03	0.03
Sheep Urine	Low	0.55	1
•	Medium	0.12	0.22
	High	0.005	0.009

Table 4: Emission factors for urine on low, medium and high slopes. Values from Saggar et al.
(2015) and Luo et al. (2016)

To calculate the EF_1 values for urea on medium and high slopes, we took the current, lowslope value of 0.48% from the National Inventory (Ministry for the Environment 2015), and multiplied it by the average of the medium-to-low (0.21) and high-to-low (0.02) slope ratios from Table 4, respectively. Table 5 shows the calculated EF_1 values for urea. It is important to note that these EF_1 values for urea need to be verified by collecting data from field experiments.

 Table 5: EF1 for urea by slope class

Slope class	EF ₁ (%)
Low	0.48
Medium	0.098
High	0.009

3.3 Calculating N₂O emissions from fertiliser

The method used to calculate N_2O emissions is based on available data on the following components:

 $A_{r,f,s}$ – the land area in region r, farm type f, and slope class s (ha)

- $N_{fert,r,f}$ the total amount of N fertiliser applied to pastures in region *r* and farm type *f* (tonnes)
- $EF_{I,s}$ the emission factor for direct emissions from fertiliser N applied to slope s (%)

The total amount of direct N2O emissions (N2Ofert,sb tonnes CO2e) for N-fertiliser application to sheep and beef farm pastures is then calculated using the following equation (Eq.1):

$$N_2 O_{fert,sb} = \sum_r \sum_f \sum_s N_{fert,r,f} \times \frac{A_{r,f,s}}{A_{r,f,tot}} \times \frac{EF_{1,s}}{100} \times \frac{44}{28} \times 298$$
(1)

where $A_{r,f,tot}$ is the total area in region *r* and farm type *f*; 44/28 is the factor to convert between tonnes N₂O-N and tonnes N₂O; 298 is the factor to convert tonnes N₂O to tonnes CO₂e.

For this study we assumed that all the fertiliser N applied to sheep and beef pasture farms was in the form of urea, as the information on the distinction between the forms of fertiliser N used was not available. Moreover, the New Zealand-specific EF_1 values for other forms of N fertilisers have not been determined. This is an important aspect which needs to examine in the future. Note that the choice of the low slope EF_1 value (currently 0.48%) does not affect the relative impact of incorporating slope effects on direct N₂O emissions.

The major methodological difference between calculating direct N_2O emissions from fertiliser application and deposition of animal excreta (other than different emission factors) is in the allocation of N to the different slope classes. For animal excreta, Saggar et al. (2015) used a nutrient transfer model to reflect animals' preference to spend more time on lower slopes. However, for fertiliser N we assume that aerial top dressing is the main method of application⁴ and, therefore, the allocation of N is directly proportional to the land area in each slope class. However, this may lead to systematic errors as on many farms only part of the total area will have fertiliser applied, and the fertiliser is likely to be preferentially applied to the more productive areas. This is an area where further research is required.

The allocation of fertiliser N to each slope class was calculated for each region and farm type, as shown in Table 1, and was then multiplied by the appropriate emission factors from Table 4 to calculate the amount of N directly emitted as N_2O . For the non-commercial farms (accounting for 3-5% of the total area) it was assumed that the land area in each slope class was proportional to the regional average. Explicit formulae for these calculations are given in Appendix 2.

To convert from July-June years used in the Beef+Lamb Sheep and Beef Farm survey data to calendar years as used in the National Inventory, the averages of consecutive years were used. For example, the emissions for calendar year 2000 were the averages of the emissions for the years ended 30 June 2000 and 30 June 2001.

3.4 Feasibility of integration into national inventory methodology

The current Inventory reports nitrous oxide (N₂O) estimates from applied fertiliser N at the Tier 1 level, using a single EF_1 value irrespective of slope. The inventory currently differentiates between urea and other N fertilisers for which the EF_1 values are 0.48% and 1% respectively, but does not differentiate between N fertiliser application on different slope classes or farm types.

The proposed framework is similar in structure to that suggested for estimating direct N_2O emissions from hill country by Saggar et al. (2015), the main difference being allocation of N

Ministry for Primary Industries

⁴ According to the Beef + Lamb New Zealand data for 2013-14, on average 56% of the fertilised land area was aerially top-dressed. This amount ranges from 3% for Marlborough-Canterbury mixed finishing up to 94% for East Coast hard hill country.

is simply proportional to land area (Section 3.3). Incorporation of this report's methodology into the Inventory would require the inclusion of emission factor (EF_1) values for urea by slope class (Table 4), and the following additional activity data:

- land area by slope class, region and farm class (Table 6)
- fertiliser N application by region and farm class (Table7).

The N_2O emissions from fertiliser N would then be calculated according to equation 1 in Section 3.3, and reported at the Tier 1 section of the Inventory. Further work may be needed to confirm that the allocation of N fertiliser according to the relative area in each slope class is reasonable.

4 Results

The allocation of fertiliser N across slope classes for New Zealand sheep and beef farms is shown in Figure 1. The total fertiliser N applied to pastures on New Zealand sheep and beef farms varied between 9207 and 66 270 tonnes N (as a percentage of the total fertiliser N use in New Zealand the range was 8% to 25%), during 1990–2013. As the aim of this study was to quantify emissions from fertiliser applied to sheep, beef and deer pastures the fertiliser N applied to forage crops grown on slopes was not included and only the pasture fertiliser N values were used. Using a single emission factor of 0.48% across all slope classes gave estimates of direct N₂O emissions of 20.7 Gg CO2e in 1990 rising to 86.7 Gg in 2013. Accounting for the lower emissions from higher slopes brought this down to 8.3 Gg CO2e in 1990 (60% reduction) and 30.5 Gg in 2013 (65% reduction over using a single EF₁ value) (Figure 2).

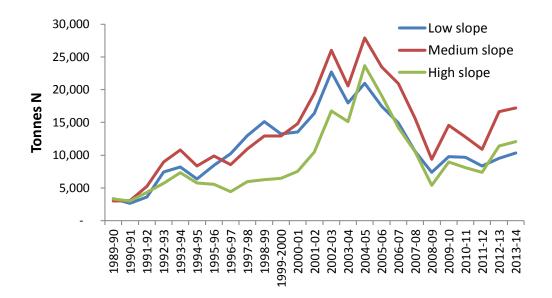


Figure 2: Allocation of fertiliser N applied to sheep and beef pastures by slope class.

The highest amount of fertiliser N (66 270 tonnes) applied to sheep and beef grazed pastures in 2005 contributed to the highest estimates of N₂O emissions (149 Gg CO2e using a single EF₁ value of 0.48%). However, with the slope-dependent EFs, the estimated N₂O emissions were slightly higher in 2003 (57.1 compared to 55.9 Gg CO2e). This difference in timing occurs because although N fertiliser use on sheep and beef pastures was at its maximum in 2005, there was a higher percentage of the fertiliser N applied to low slopes in 2003.

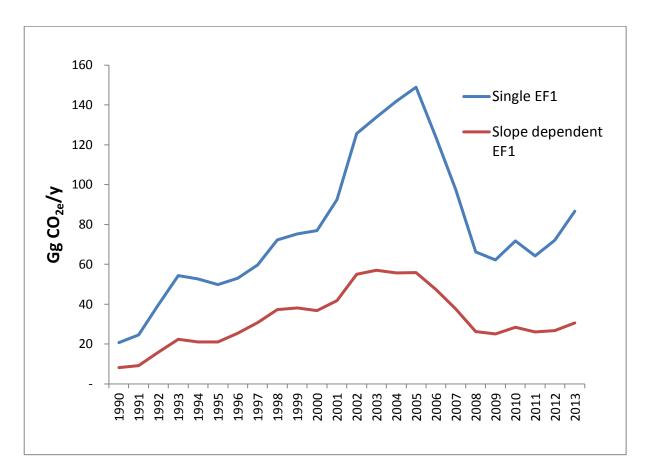


Figure 3: Direct N_2O emissions for fertiliser applied to pasture on sheep and beef farms using a single emission factor for all slopes (blue line) and using lower emission factors for medium and high slopes (red line).

5 Conclusions

The total fertiliser N applied to pastures on New Zealand sheep and beef farms varied between 9207 and 66 270 tonnes N (as a percentage of the total fertiliser N use in New Zealand the range was 8% to 25%), during 1990–2013. The proposed framework is similar in structure to that suggested for estimating direct N₂O emissions from hill country by Saggar et al. (2015), the main difference being allocation of fertiliser N is simply proportional to land area. However, this assumption needs to be confirmed.

Calculating direct N₂O emissions from sheep and beef farm pasture using estimated EF_1 values of 0.48%, 0.98% and 0.009%, for low, medium, and high slopes, respectively, rather than a single EF_1 value of 0.48% indicated the potential for a 60% to 65% reduction in estimated emissions of N₂O. Estimates of direct N₂O emissions in 1990 and 2013 were reduced from 20.7 and 86.7 Gg CO2e/y to 8.3 and 30.5Gg CO2e/y, respectively. In 2013 this was equivalent to a reduction of 0.14% in the total greenhouse gas emissions from the agricultural sector.

Incorporation of this report's methodology into the Inventory would require the inclusion of emission factor (EF_1) values for urea N by slope class, and the following additional activity data: land area by slope class, region and farm class, and fertiliser N application by region and farm class. The N₂O emissions from fertiliser N would then be calculated according to equation 1 in Section 3.3, and reported at the Tier 1 section of the Inventory.

In the absence of available New Zealand EF_1 data on slopes, EF_1 values used in this study were estimated from the measured average emission factors for beef and sheep urine applied on slopes. These values need to be confirmed with field measurements of N₂O emissions from fertiliser urea before this work can be incorporated into the inventory.

Further work may be needed to confirm that the allocation of N fertiliser according to the relative area in each slope class is reasonable.

6 References

- Kelliher FM, Cox N, van der Weerden TJ, de Klein CAM, Luo J, Cameron KC, Di HJ, Giltrap D, Rys G 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environmental Pollution 186: 63–66
- Kuikman, P.J., van der Hoek, K.W., Smit, A., Zwart, K., 2006. Update of emission factors for nitrous oxide from agricultural soils on the basis of measurements in the Netherlands. Alterra report 1217, Pp. 40.
- Luo J, Hoogendoorn C, van der Weerden T, Saggar S, de Klein C, Giltrap D, Carlson B 2016. Nitrous oxide emission factors for animal excreta deposited on hill country steep slopes – Final report. Report RE500/2016/014. Wellington, Ministry of Primary Industries. Pp 52.
- Ministry for the Environment 2014. New Zealand's Greenhouse Gas Inventory 1990-2012. Agricultural background files. https://www.mfe.govt.nz/publications/climatechange/new-zealands-greenhouse-gas-inventory-1990%E2%80%932012.
- Saggar S, Giltrap DL, Davidson R, Gibson R, de Klein CAM, Rollo M, Etema P, Rys G 2015. Estimating direct N₂O emissions from sheep, beef, and deer grazed pastures in New Zealand hill country: accounting for the effect of land slope on the N₂O emission factors from urine and dung. Agriculture Ecosystems and Environment 205: 70–78
- Smith, K.A., McTaggart, I.P., Tsuruta, H., 1997. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manage. 13, 296–304.
- Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S., Ball, B.C., 2012. The effect of N fertilizer forms on nitrous oxide emissions from UK arable land and grassland. Nutr. Cycl. Agroecosyst. 93, 127–149.
- van der Weerden, T., Cox, N., Luo, J., Di, H.J., Podolyan, A., Phillips, R.L., Saggar, S., de Klein, C.A., Ettema, P., 2016a Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent. Agriculture Ecosystems & Environment 222: 133–137.
- van der Weerden, T., Cox, N., Luo, J., Di, H.J., Podolyan, A., Phillips, R.L., Saggar, S., de Klein, C.A., Ettema, P., 2016b Nitrous oxide emissions from urea fertiliser and effluent with and without inhibitors applied to pasture. Agriculture, Ecosystems and Environment 219: 58–70.

Appendix 1 – Selected data from Sheep and Beef Farm Survey data

Table 6: Land area (ha) in sheep and beef farms by region, farm type, and slope class for years ending 30 June. Data provided by Beef + Lamb New Zealand

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
										Lo	w slop	е														
Northland- Waikato-Bay of Plenty	North Island Hard Hill Country	15,582	15,217	25,633	24,626	23,924	20,654	19,430	18,259	17,052	17,073	17,584	9,612	14,772	14,055	13,687	11,999	11,240	11,871	9,844	10,104	10,043	9,593	8,294	8,534	13,747
	North Island Hill Country	175,391	160,696	160,146	181,410	197,055	178,138	169,184	177,297	167,462	164,177	159,476	136,102	132,836	138,740	133,411	137,490	128,062	131,036	112,075	113,091	119,421	124,100	110,268	125,030	115,093
	North Island Intensive Finishing	172,952	137,015	126,127	141,012	119,138	111,925	111,447	81,515	88,743	70,330	80,299	64,834	56,900	44,703	47,095	48,764	51,729	46,003	46,258	47,833	56,873	55,141	47,966	51,670	48,809
East Coast	North Island Hard Hill Country	31,582	33,695	28,402	30,421	29,889	27,118	21,932	17,312	19,298	18,231	19,184	19,279	20,970	22,099	19,865	25,484	25,863	28,830	27,379	26,697	22,347	30,469	30,946	34,388	34,852
	North Island Hill Country	50,478	45,188	46,881	55,593	54,419	60,524	60,701	66,843	66,047	58,490	59,800	60,202	64,343	67,698	66,074	63,657	62,019	61,289	60,658	54,714	64,621	60,876	51,892	45,337	47,346
	North Island Intensive Finishing	124,192	114,177	117,108	127,234	124,318	125,174	125,009	116,603	111,134	101,900	104,880	96,461	93,561	89,235	85,279	76,315	83,137	94,002	89,505	91,115	95,417	81,981	87,332	82,093	76,587

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Taranaki- Manawatu	North Island Hard Hill Country	12,529	13,943	15,493	10,272	11,269	16,872	16,548	16,085	15,819	15,289	13,466	16,459	14,306	13,486	13,303	14,375	15,440	16,294	16,093	14,117	15,584	15,225	13,877	11,680	12,765
	North Island Hill Country	47,418	47,603	49,412	50,913	57,490	48,969	43,570	39,096	37,463	35,942	38,091	41,925	42,048	42,947	47,807	44,995	43,057	47,603	47,600	49,474	47,246	46,158	45,066	44,568	48,181
	North Island Intensive Finishing	118,388	99,075	94,065	96,801	90,546	83,610	75,300	69,307	606'99	61,561	52,145	48,547	45,558	42,171	37,225	32,679	32,761	37,012	42,583	37,737	32,848	32,597	31,855	32,344	31,601
Marlborough- Canterbury	South Island High Country	106,390	142,277	141,945	184,216	210,936	195,553	202,261	205,710	201,577	184,951	149,577	155,074	148,317	193,661	161,618	126,565	106,293	82,057	85,859	82,132	123,572	98,203	106,368	77,630	73,558
	South Island Hill Country	213,721	172,065	207,814	202,875	224,856	226,515	211,768	221,427	216,704	223,305	212,139	201,794	208,100	89,517	271,211	119,833	175,023	148,099	143,734	126,813	64,217	55,445	78,428	78,632	78,607
	South Island Finishing Breeding	556,500	650,060	646,938	733,194	670,915	664,484	740,502	763,157	699,136	687,515	681,822	667,991	666,426	652,769	532,350	508,215	409,330	406,816	374,395	364,721	364,921	366,685	357,646	298,991	297,195
	South Island Mixed Finishing	381,837	193,903	193,236	268,519	254,403	235,183	276,436	274,496	290,362	286,802	251,411	235,768	226,481	232,506	242,946	231,530	176,527	190,125	184,111	182,562	191,385	191,515	208,955	199,189	200,615

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Otago- Southland	South Island High Country	68,282	61,466	41,459	42,059	47,484	45,505	42,969	46,670	47,275	44,507	39,362	38,352	43,248	43,177	47,430	45,073	49,231	69,869	72,933	65,522	69,597	65,124	67,132	69,228	64,008
	South Island Hill Country	122,761	172,528	189,522	178,405	212,201	190,723	195,913	193,069	117,533	117,675	116,254	102,798	94,043	93,888	78,117	97,486	90,975	97,111	92,723	96,834	105,465	119,947	103,151	99,873	102,542
	South Island Finishing Breeding	193,518	177,603	177,941	203,870	156,353	126,847	132,855	164,399	152,939	137,658	153,303	160,200	141,352	104,379	94,325	82,309	95,367	108,167	89,188	95,304	109,199	111,012	99,138	100,556	85,732
	South Island Intensive Finishing	381,582	362,152	356,185	378,074	321,595	284,144	294,392	312,758	282,745	265,450	240,329	256,319	383,483	365,546	329,881	306,148	308,619	309,508	294,991	287,667	275,162	274,560	269,453	227,130	238,117
										Med	ium Sle	оре														
Northland- Waikato-Bay of Plenty	North Island Hard Hill Country	70,120	65,016	132,104	131,748	151,954	111,773	106,035	105,681	101,243	85,852	89,343	45,005	63,877	57,741	58,549	57,600	52,110	55,039	53,235	54,126	58,771	53,501	52,292	42,669	69,064
	North Island Hill Country	717,508	705,493	703,901	659,355	706,422	674,133	609,700	637,587	610,743	663,272	660,684	618,649	576,568	535,916	528,197	533,463	512,247	504,202	517,268	499,254	520,335	482,297	460,369	470,223	477,885
	North Island Intensive Finishing	212,485	201,240	183,088	209,613	190,265	190,439	215,262	158,306	154,731	133,525	122,408	105,781	116,919	88,229	87,714	89,100	85,621	93,234	91,281	87,190	87,451	70,979	76,085	74,112	65,385

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
East Coast	North Island Hard Hill Country	150,254	180,056	159,895	169,488	160,783	158,972	149,865	126,698	118,756	88,354	96,605	84,188	80,798	98,282	108,411	115,837	112,648	127,589	141,654	142,381	142,900	149,024	148,539	159,044	160,853
	North Island Hill Country	345,867	331,962	350,740	367,629	368,644	364,735	364,204	381,961	348,248	356,785	340,290	322,902	326,971	319,686	288,766	303,234	284,827	278,251	262,849	261,928	241,174	236,983	261,663	270,967	274,604
	North Island Intensive Finishing	255,284	226,830	231,173	219,910	222,862	184,323	198,940	197,610	204,905	189,242	176,242	191,894	188,107	178,470	169,651	158,436	162,159	170,434	163,665	155,724	159,027	157,067	161,524	149,527	152,446
Taranaki- Manawatu	North Island Hard Hill Country	24,626	23,094	26,559	21,437	25,478	27,083	23,007	24,334	23,120	22,374	24,807	25,017	27,976	25,176	26,607	36,278	37,741	45,984	45,418	42,686	51,737	44,760	66,666	66,698	71,356
	North Island Hill Country	96,945	110,731	109,336	115,614	131,075	115,649	106,083	104,255	106,472	115,200	114,272	108,037	110,568	115,511	110,553	94,763	92,948	111,793	116,514	123,318	115,720	115,061	119,292	123,574	128,721
	North Island Intensive Finishing	73,025	61,111	61,142	65,483	55,190	50,792	50,437	47,052	51,276	51,871	44,322	40,303	38,039	34,872	35,179	31,910	31,989	36,606	34,147	32,572	29,004	27,504	26,878	24,341	29,846

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Marlborough- Canterbury	South Island High Country	77,870	94,285	92,921	100,039	101,068	93,628	93,292	90,460	58,047	57,656	194,834	211,030	201,836	231,330	299,152	58,126	221,678	264,280	275,175	272,284	294,861	246,559	275,976	265,421	263,416
	South Island Hill Country	182,202	147,269	166,398	182,743	208,323	197,336	207,818	212,789	208,252	190,755	185,710	150,315	158,209	177,016	131,923	152,148	134,498	162,432	142,002	156,817	193,704	141,874	160,476	164,151	171,456
	South Island Finishing Breeding	398,403	458,653	444,326	468,946	474,459	440,694	485,401	498,317	518,384	471,438	453,520	446,287	426,843	430,721	393,939	355,995	302,733	333,632	337,366	362,706	355,844	327,989	355,648	350,990	308,068
	South Island Mixed Finishing	46,350	39,993	41,749	59,949	67,201	62,418	38,999	46,723	40,010	44,036	46,199	56,626	64,006	64,207	38,716	44,274	41,462	37,899	32,204	32,643	29,869	32,863	38,048	39,955	42,866
Otago- Southland	South Island High Country	128,383	95,899	104,102	111,251	110,378	130,437	90,437	70,739	41,207	45,919	56,532	55,081	84,169	84,030	81,006	92,799	160,260	83,818	89,140	96,244	96,081	95,117	99,343	102,444	94,395
	South Island Hill Country	126,872	106,561	75,413	65,565	81,300	73,071	75,060	67,782	77,999	78,093	77,150	71,479	94,043	93,380	92,721	109,843	133,109	139,914	127,895	178,018	176,672	138,215	132,338	162,805	194,325
	South Island Finishing Breeding	234,424	195,362	225,393	270,350	275,346	338,260	339,800	352,855	372,709	351,652	349,878	385,410	433,403	433,230	399,859	363,459	337,383	281,057	308,186	334,065	311,269	410,535	418,586	402,225	328,806
	South Island Intensive Finishing	242,501	235,897	246,334	245,417	185,325	203,310	221,423	221,871	267,322	257,865	332,002	292,613	219,133	208,251	170,000	149,429	154,309	125,901	113,194	161,465	174,269	184,269	162,362	154,310	150,301

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
										Hig	h Slop															
Northland- Waikato-Bay of Plenty	North Island Hard Hill Country	225,235	214,414	165,623	149,601	153,247	133,035	119,359	111,768	108,703	105,852	118,332	162,541	138,134	147,771	152,077	121,371	123,974	130,943	137,827	137,842	124,982	133,568	128,025	139,030	108,996
	North Island Hill Country	279,031	297,875	301,672	265,138	275,133	223,547	252,179	296,632	279,103	252,831	234,331	235,087	240,237	272,039	258,653	258,482	277,921	242,131	258,634	259,281	321,299	377,941	352,857	274,523	270,218
	North Island Intensive Finishing	54,357	47,099	48,823	62,884	62,236	63,480	47,327	17,721	14,790	12,231	5,876	3,412	0	1,176	0	0	0	0	0	0	0	0	0	0	1,381
East Coast	North Island Hard Hill Country	517,755	587,552	560,684	570,391	561,710	592,871	593,978	509,939	473,540	460,001	450,137	429,935	431,126	374,519	384,830	406,007	398,292	382,153	386,870	370,785	379,891	347,353	365,159	353,551	310,447
	North Island Hill Country	368,302	331,962	347,267	337,143	328,268	308,990	305,060	323,075	342,244	355,323	353,105	339,321	288,890	305,896	325,474	293,975	304,352	294,186	280,689	301,509	300,025	278,292	260,559	249,880	255,666
	North Island Intensive Finishing	72,445	62,416	60,835	53,407	43,966	41,266	37,637	35,594	43,991	45,911	41,087	49,256	48,258	44,617	43,547	38,987	40,334	38,655	44,326	43,901	53,009	49,035	47,143	43,246	44,494

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Taranaki- Manawatu	North Island Hard Hill Country	156,829	154,686	150,946	160,777	170,998	205,565	184,860	186,422	180,496	168,924	172,228 19	196,190	191,065	194,811	189,270	211,852	215,810	240,421	227,806	211,078	208,820	210,099	215,383	203,168	217,668
	North Island Hill Country	406,747	396,354	385,830	364,875	361,032	308,398	281,311	300,736	286,884	289,382	278,754	251,549	238,267	226,579	233,804	209,977	205,716	143,528	146,353	161,716	154,750	156,536	157,730	141,807	135,193
	North Island Intensive Finishing	9,958	12,963	15,991	15,185	7,761	7,033	8,525	6,994	6,878	5,700	8,864	5,496	11,058	10,137	8,590	9,611	9,635	5,288	4,419	9,533	8,387	9,508	9,291	7,002	7,023
Marlborough- Canterbury	South Island High Country	1,116,224	1,018,475	1,002,446	1,024,619	1,092,947	1,015,042	949,110	843,344	795,003	782,324	686,780	684,510	654,688	655,416	493,747	746,285	705,809	648,452	659,885	646,480	468,353	570,752	469,285	453,858	448,412
	South Island Hill Country	864,113	861,075	806,847	789,046	814,276	770,917	711,164	721,599	740,792	773,619	711,413	689,117	652,529	587,584	707,829	788,342	821,669	752,440	705,394	697,470	740,602	739,265	716,711	695,061	672,722
	South Island Finishing Breeding	205,526	278,081	277,259	171,203	155,682	158,374	155,895	114,996	112,544	94,942	120,322	86,378	77,107	69,557	47,912	112,936	89,541	92,556	98,741	98,737	61,728	70,020	91,909	131,853	108,730
	South Island Mixed Finishing	145,672	70,290	75,148	2,498	3,600	2,229	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,133	1,247	1,175	572

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Otago- Southland	South Island High Country	1,324,261	1,419,006	1,331,989	1,318,737	1,475,789	1,339,558	1,324,042	1,325,691	1,331,893	1,349,608	1,258,353	1,226,056	1,001,682	1,000,029	1,113,239	1,108,150	1,042,271	1,117,782	1,127,825	952,569	981,475	889,030	844,654	871,020	963,835
	South Island Hill Country	255,800	214,532	239,515	257,476	166,122	149,308	153,371	49,726	58,232	58,303	57,598	58,597	73,963	73,841	87,853	103,802	104,931	144,997	104,714	122,265	121,588	110,296	105,472	126,892	119,688
	South Island Finishing Breeding	129,012	180,562	174,976	112,277	124,528	164,156	155,848	161,725	165,791	167,692	159,485	148,592	162,380	169,476	164,045	177,568	150,248	126,786	145,704	158,506	142,877	174,896	171,240	153,913	116,998
	South Island Intensive Finishing	24,963	9,967	16,644	6,633	2,725	12,248	37,743	40,097	38,556	27,809	2,478	0	0	0	0	0	0	0	0	0	0	1,843	0	0	0

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Northland- Waikato-Bay of Plenty	North Island Hard Hill Country	288	275	851	1,227	1,165	600	444	883	475	536	759	963	794	2,058	2,356	4,048	2,934	1,651	1,681	252	154	369	510	602	1,242
	North Island Hill Country	795	1,186	2,965	3,504	4,810	3,122	3,501	3,087	3,639	6,571	6,537	4,914	8,747	9,221	7,872	10,704	10,115	7,084	4,591	2,495	7,132	4,821	3,850	9,495	8,735
	North Island Intensive Finishing	747	426	619	2,276	2,675	2,335	2,125	1,176	1,355	2,345	2,549	2,137	2,264	2,405	2,827	3,313	3,269	3,983	3,327	1,994	1,890	2,113	1,160	1,410	1,431
	Non-commercial	61	47	73	184	247	261	194	143	162	298	336	352	378	554	630	671	686	837	686	437	377	498	266	415	329
East Coast	North Island Hard Hill Country	757	533	539	638	1,121	834	451	219	891	917	890	659	2,032	3,328	1,748	5,207	3,492	2,570	1,723	888	1,464	767	1,187	2,429	1,657
	North Island Hill Country	925	705	881	1,242	1,556	1,271	1,542	1,443	2,688	2,171	1,709	3,286	4,084	7,874	5,614	10,631	9,091	5,399	4,744	1,859	2,088	2,950	2,218	3,392	1,672
	North Island Intensive Finishing	519	612	1,072	1,250	1,962	1,519	1,215	855	1,969	784	1,629	2,666	3,639	4,842	3,801	4,635	2,562	3,523	2,472	1,903	2,124	610	846	2,341	1,529
	Non-commercial	92	124	134	163	176	216	185	91	235	117	176	235	358	443	439	487	292	334	364	317	329	88	141	335	225

Table 7: Fertiliser N allocation (tonnes) on sheep & beef pasture by region and farm class for years ended 30 June. Data provided by Beef + Lamb New Zealand

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Taranaki- Manawatu	North Island Hard Hill Country	173	0	223	264	730	493	448	245	168	189	598	294	470	711	1,180	1,745	1,300	935	289	67	403	66	118	182	1,308
	North Island Hill Country	643	928	1,153	1,809	2,763	2,289	1,134	704	1,579	549	1,659	1,780	1,556	4,442	3,727	4,291	2,402	1,885	1,785	517	1,028	1,399	1,450	2,294	1,786
	North Island Intensive Finishing	331	91	379	383	863	316	495	637	561	627	575	775	798	930	614	1,232	735	652	641	280	490	408	430	600	316
	Non-commercial	42	20	59	44	102	57	98	100	66	62	83	105	131	129	131	212	129	108	135	67	136	82	87	133	62
Marlborough- Canterbury	South Island High Country	61	83	128	88	106	22	38	76	40	115	69	182	84	60	427	573	318	663	338	235	250	301	156	404	589
	South Island Hill Country	241	222	224	235	426	465	482	705	378	1,065	436	825	994	735	1,814	2,026	2,119	1,915	1,088	1,129	1,584	1,356	1,391	1,202	2,555
	South Island Finishing Breeding	1,263	1,432	1,054	5,229	2,598	2,739	4,623	4,896	5,836	5,551	5,259	6,317	7,404	12,328	5,887	7,349	8,934	9,458	5,547	5,043	5,810	5,330	6,209	5,212	5,615
	South Island Mixed Finishing	1,980	1,094	1,312	751	1,676	1,898	1,955	4,677	6,972	8,817	7,421	5,670	7,192	9,636	8,132	8,054	6,278	2,975	2,923	1,879	832	1,473	1,751	2,121	2,455
	Non-commercial	53	49	37	127	17	95	125	133	145	143	129	200	205	414	224	334	469	410	259	239	235	223	238	251	263

Region	Farm Type	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96	1996-97	1997-98	1998-99	1999-2000	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14
Otago- Southland	South Island High Country	0	0	0	28	0	0	102	56	86	196	58	91	72	123	151	65	26	0	88	30	129	51	83	179	303
	South Island Hill Country	0	87	0	23	0	0	54	249	50	323	0	78	1,021	636	1,158	1,205	885	1,924	556	419	1,338	930	493	547	674
	South Island Finishing Breeding	0	147	147	285	278	731	2,051	676	267	382	249	695	1,976	1,890	2,571	2,143	1,891	1,517	2,193	593	1,526	2,638	1,387	1,835	3,946
	South Island Intensive Finishing	703	699	1,335	2,327	3,001	1,210	2,529	2,157	2,317	2,541	1,495	3,644	2,060	2,646	2,210	3,479	1,937	2,098	1,207	1,493	3,854	4,041	2,606	2,083	2,714
	Non-commercial	0	12	1	5	10	30	81	25	15	18	15	30	88	76	119	136	137	106	106	27	73	88	46	95	193

Appendix 2 – Formulae for calculating direct N₂O emissions from Sheep + Beef pasture fertiliser

This method assumes the following data is available:

 $A_{r,f,s}$ – the land area in region *r*, farm type *f*, and slope class *s* (ha)

- $N_{fert,r,f}$ the total amount of N fertiliser applied to pastures in region *r* and farm type *f* (tonnes)
- $EF_{1,s}$ the emission factor for direct emissions from fertiliser N applied to slope s (%)

The total amount of direct N₂O emissions ($N_2O_{fert,sb}$ tonnes CO₂e) for N fertiliser application to sheep and beef farm pastures is calculated according to equation 1:

$$N_2 O_{fert,sb} = \sum_r \sum_f \sum_s N_{fert,r,f} \times \frac{A_{r,f,s}}{A_{r,f,tot}} \times \frac{EF_{1,s}}{100} \times \frac{44}{28} \times 298$$
(1)

where:

 $A_{r,f,tot}$ – is the total area in region r and farm type f

44/28 – is the factor to convert between tonnes N₂O-N and tonnes N₂O

298 - is the factor to convert tonnes N_2O into tonnes CO_2e