GPLER Round 4 successful pre-proposals summary

Title	Countries involved	Contact
Mitigation via the Nitrogen Detour Pathway: exploring an	NZ (Landcare	Andrew McMillan
abiotic nitrogen removal mechanism that bypasses N ₂ O	Research,	+64 6 353 4931
emissions	NIWA), USA	McMillanA@landcareresearc
Intensive agriculture contributes excess reactive N that		h.co.nz
leads to greater nitrate leaching and nitrous oxide (N2O)		
emission. Transformation of reactive N from soil back to		
atmospheric N2 is the most effective way of removing		
excess environmental N. Various N removal processes		
including denitrification, codenitrification and Annamox are		
known to achieve this transformation but N2O is typically a		
by-product. Our team recently reported (manuscript in		
review) a chemical (and completely abiotic) transformation		
of reactive N to N2 that is not dependent on anaerobic		
conditions and does not require production of N2O. This		
mechanism effectively bypasses or detours N2O production		
while moving excess reactive N into inert atmospheric N2.		
This nitrogen detour opens new avenues for removal of		
excess soil N and N2O mitigation in grazed livestock		
systems. We will investigate the potential for this abiotic		
pathway to be used as a mitigation technique to reduce		
N2O emissions and nitrate leaching.		
High Metabolisable Energy (HME) ryegrass: a bioremediation	NZ (AgResearch,	Greg Bryan +64 29 200 5013
tool for urine nitrogen (N) and for reduction of on-farm N_2O	Lincoln Uni,	Gregory.bryan@agres
emissions	Dairy NZ)	earch.co.nz
High Metabolisable Energy (HME) is an enhanced		
photosynthesis technology that confers increased carbon		
assimilation and growth rates in genetically modified plants.		
We have developed HME ryegrass and will conduct		
overseas field and animal nutrition testing in 2018-2020.		
Biophysical modelling supports the hypothesis that HME		
ryegrass will provide a GHG mitigation tool for farmers and		
will reduce farm nitrogen (N) losses. The proposed research		
will enhance our programme enabling the verification of		
modelling by measuring N cycling in PC2 containment		
glasshouses in years 1-2 and in the field in year 3. We will		
compare HME ryegrass with non-GM ryegrass at different		
urine N loading rates to determine if HME ryegrass will		
reduce N loss from a grazing system through an altered N		
cycling strategy. This knowledge can be added to the plant		
performance, animal nutrition and methane mitigation from		
two separate programmes to increase the value proposition		
for progressing to NZ based trials in 2021.		
A decision tool for predicting N_2O emissions and targeting	NZ (Lincoln Uni)	Tim Clough
mitigation.	Germany	+64 3 423 0775
Nitrous oxide (N2O) is produced by nitrification and		tim.clough@lincoln.ac.nz
denitrification pathways under aerobic and anaerobic		
conditions, respectively. Nitrifiers may also denitrify as		
oxygen becomes limiting. A tool is required to identify N2O		
emission pathways in order to better target mitigation. The		
N2O molecule has a variable isotopic composition (site		
preference 'SP') due to the placement of the 15N atom in		
the molecule during its assembly by either nitrifiers or		

		,
denitrifiers. Few measures of SP in situ have been		
performed and no data is available that connects SP, a		
potential identifier of the N2O emission pathway, with soil		
environmental and biochemical conditions. We will measure		
redox, oxygen, and SP in conjunction with soil gas diffusivity,		
a measure of the soil's ability to supply oxygen, and thus a		
determinant of a soils N2O productive potential, in order to		
provide a tool that identifies the soil conditions pertaining		
to a given N2O emitting pathway.		
Improving antibody binding to antigenic targets in the rumen	NZ	Neil Wedlock +64 6 351 8698
	(AgResearch),	neil.wedlock@agresea
	Argentina	rch.co.nz
Development of a high throughput method for microbial	NZ (AgResearch,	Suzanne Rowe
sequencing; and application in sheep and cattle to predict	Dairy NZ),	+64 3 489 9181
methane emissions	Netherlands,	suzanne.rowe@agresearch.c
Rumen microbial community profiles (RMCP) have been	Australia	0.nz
shown to be under genetic control and to be highly	, lastrana	
predictive of rumen outputs including production of		
methane and volatile fatty acid (VFA) concentrations. This		
suggests RMCP are a useful tool in ruminant production		
systems, and in particular, in systems where there is little		
infrastructure for direct measurement of methane		
production and feed intake. By harnessing a new wave of		
genotyping technologies and robotic efficiencies we will		
develop a procedure that will make it possible to measure		
many animals for RMCP at lower cost to elucidate both		
environmental and host genetic differences. We will		
-		
compare RMCP across diets, species, breed and individuals		
within breed using both dairy cattle and sheep to determine		
common signatures associated with rumen fermentation		
producing low methane. This project will develop a high		
throughput method to determine signatures of RMCP		
predictive of methane and VFA concentrations under both		
pastoral and intensive livestock production systems. This		
will have utility in developing both improved management		
systems and in genetic selection of more efficient, low		
methane producing, animals.		
Reducing hydrogen and methyl compound availability in the	NZ (AgResearch,	Graeme Attwood
rumen to decrease methane emissions	Donvis, Otago	+64 6 351 8162
Current methane (CH4) mitigation research focuses on the	Uni), USA, Japan	graeme.attwood@agresearch
direct inhibition of methane forming microorganisms and		<u>.co.nz</u>
does not target those microorganisms that produce		
hydrogen (H2) or methyl (CH3)-compounds which serve as		
substrates for the methanogens. CH4 formation is		
dependent on H2 and CH3-compound availability and		
reducing the supply of these substrates will lead to reduced		
CH4 formation. Our recent GRA-funded projects (Global		
Rumen Census, Deep sequencing the rumen microbiome,		
Hungate1000) now allow us to identify the main H2 - and		
CH3-compound-producing bacteria, and this proposal		
targets these organisms with the aim of finding ways to		
reduce their supply of substrates to methanogens via		
inhibition of their growth or enzymatic activities. The		
outcome from the work will be identification of a range of		
different microorganisms and metabolic pathways to		
	1	1

maninulata leading to now inhibitany compounds yearings		
manipulate, leading to new inhibitory compounds, vaccines		
and microbiological interventions to achieve CH4 inhibition.		
Discovery of New Nitrification Inhibitors to Mitigate N ₂ O	NZ (Lincoln Uni,	Hong Di
Emissions in Grazed Pastures – Phase II: Validation in the Soil	Otago Uni,	+64 3 423 0779
and Field Testing	AgResearch,	hong.di@lincoln.ac.nz
In grazed pastures, the main source of nitrous oxide (N2O)	Auckland Uni,	nong.ut@intcoll.ac.nz
is from nitrogen (N) returned in animal excreta, particularly	Ravensdown),	
in the urine. Previous research has shown that nitrification	China, UK	
	China, UK	
inhibitor (NI) treatment of grazed pasture soils is a		
scientifically proven approach to mitigating N2O emissions. The suspension of the current NI, dicyandiamide (DCD),		
necessitates the search for new NIs which are effective in		
mitigating N2O emissions while meeting food safety		
standards. We have successfully developed phenotypic		
screening assays and discovered potential new NIs by		
screening thousands of natural and synthetic compounds in		
our current GPLER research. This application is to seek additional funding to take this research to the next phase to		
validate the efficacy of the new NIs in the soil and field		
testing, eventually leading to commercialisation. The		
outcome is to enable farmers to reduce N2O emissions		
from grazed pastures by using the new NIs.		
Diet-based, plant and endophyte effects on pasture N2O	NZ (AgResearch,	Jiafa Luo
emissions: mechanisms and new targets for mitigation. To	Massey Uni),	+64 7 838 5125
date, research has concentrated on identifying primary	China,	Jiafa.Luo@agresearch.co.nz
sources of N2O emissions from grazed pasture. However, a	Colombia, USA	<u>shara.Edo@dgresearen.co.nz</u>
complete understanding of the processes controlling the	2010111510, 03/1	
production of N2O remains elusive, as shown by a) the		
difficulty in modelling emissions and b) the difficulty in		
explaining the variability measured in field experiments.		
While, previously, the focus has been on soil processes, we		
have now confirmed that specific plants, and the resultant		
urine excreted by animals consuming those plants, can have		
a marked influence on N2O emissions and we are proposing		
to attain a mechanistic understanding of how this occurs. To		
our advantage, we have identified plant (and		
plant/endophyte) material that is associated with high and		
low emissions and have important preliminary clues to the		
processes we need to study. The research will assist in		
targeting mitigation strategies, provide greater confidence		
in inventory measurements, improve modelling of N2O		
emissions and determine the mitigation potential of		
different forages and livestock diets.		
Targeted management of urine patches to reduce direct and	NZ (Landcare	Professor Surinder Saggar
indirect N_2O emissions from soils in livestock-grazed pastures	Research,	+64 6 353 4934
"Spikey2 [®] " is a NZ designed machine that detects fresh	AgResearch,	saggers@landcareresearch.c
urine patches in grazed pastures, in order to target	Massey Uni,	<u>o.nz</u>
application of N inhibitors (NIs) and novel carbon	Lincoln Uni,	
amendments (CAs) to slow down N transformation rates	Pastoral	
and reduce N2O and NH3 emissions and NO3 - leaching. To	Robotics NZ),	
ensure close contact between urine and applied NIs or CAs,	Ireland, Chile,	
mapping urine patch area and depth is essential for	Australia	
calculating appropriate application rates and development		
of cost-effective N2O, NH3 and NO3 – mitigation strategies.		
We have assembled an international team with specialist		1

		1
skills in reduction of N2O emissions from grazing livestock		
systems who will: i) determine and eliminate the factors		
that constrain the efficacy of NIs and CAs, ii) further		
improve the Spikey [®] technology and iii) extend its use in NZ		
and other GRA countries. The combination of Spikey [®] and		
associated novel mitigation technologies could achieve up		
to 40% reduction in direct and indirect N2O emissions.		
Mitigating N ₂ O emissions by optimising irrigation	NZ (Lincoln Uni),	Tim Clough
management	Australia	+64 3 423 0775
This study will determine how irrigation can be managed to		tim.clough@lincoln.ac.nz
maximise soil gas diffusivity, thus maximising oxygen entry		
into the soil, and minimise the anaerobic denitrification		
processes which dominate agricultural N2O emissions from		
fertiliser and excreta. Gas diffusion is the predominant		
mechanism for gas transport across the soil atmosphere		
interface. A measure of the potential for gas diffusion to		
occur is relative gas diffusivity (Dp/Do), which describes the		
diffusion of gas through soil, relative to air, and accounts for		
functional pore space (where gases can diffuse). Previously,		
water filled pore space (WFPS) has been used has a		
predictor of the potential for soil to emit N2O but this		
parameter does not readily predict functional pore space.		
Pilot data shows relative gas diffusivity is a better predictor		
of N2O emissions across varying soil bulk density. Models		
exist for predicting Dp/Do based on easily measured		
variables: soil water content and bulk density.		
Benchmarking ecological management strategies for pasture	NZ (Otago Uni,	Sergio Morales
soils to reduce N ₂ O emissions and increase productivity	Lincoln Uni,	+64 3 479 3140
soils to reduce N_2O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the	Mainland	+64 3 479 3140 <u>Sergio.morales@otago.ac.nz</u>
soils to reduce N_2O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However,	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions	Mainland	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has	Mainland Minerals),	
soils to reduce N_2O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them.	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified.	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate	Mainland Minerals),	
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions.	Mainland Minerals), Norway, Ireland	
 soils to reduce N₂O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. 	Mainland Minerals),	Sergio.morales@otago.ac.nz
 soils to reduce N₂O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions 	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047
 soils to reduce N₂O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions intensity and conserve soil carbon 	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare Research, Dairy	Sergio.morales@otago.ac.nz
 soils to reduce N₂O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. 	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions intensity and conserve soil carbon Precision mapping technologies that visualise pasture yield, irrigation efficiency and soil characteristics have shown	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare Research, Dairy	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047 cecile.deklein@agresearch.co
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions intensity and conserve soil carbon Precision mapping technologies that visualise pasture yield, irrigation efficiency and soil characteristics have shown large within- and between-paddock variability even for	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare Research, Dairy NZ, Ravensdown, Rakaia Dairy),	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047 cecile.deklein@agresearch.co
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions intensity and conserve soil carbon Precision mapping technologies that visualise pasture yield, irrigation efficiency and soil characteristics have shown	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare Research, Dairy NZ, Ravensdown,	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047 cecile.deklein@agresearch.co
soils to reduce N ₂ O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions intensity and conserve soil carbon Precision mapping technologies that visualise pasture yield, irrigation efficiency and soil characteristics have shown large within- and between-paddock variability even for	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare Research, Dairy NZ, Ravensdown, Rakaia Dairy),	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047 cecile.deklein@agresearch.co
 soils to reduce N₂O emissions and increase productivity New Zealand relies on intense pastoral grazing, with the future goal of doubling primary industry exports. However, current pastoral practices result in high N2O emissions driven by microbial transformation of N in urine that presents a roadblock to that goal. Our prior work has resulted in a mechanistic understanding of the microbes involved, their ecology and key regulators controlling them. Further pathways for N2O emissions were also identified. This project seeks to use the acquired knowledge to validate market ready approaches to decrease N2O emissions, while maintaining or improving productivity. Further, we aim to explore new management options by addressing remaining gaps, primarily the metabolic limitations of N2O reducers controlling net emissions. We will achieve this by combining chemical and microbiological techniques with genomics/transcriptomics to elucidate metabolic processes limiting N2O reduction. We will also work with end users (farmers) and providers (fertilizer company) to validate available market ready solutions. On-farm precision mapping and management technologies to break the productivity ceiling, reduce GHG emissions intensity and conserve soil carbon Precision mapping technologies that visualise pasture yield, irrigation efficiency and soil characteristics have shown large within- and between-paddock variability even for highly productive dairy farms. Combining these mapping 	Mainland Minerals), Norway, Ireland NZ (AgResearch, Landcare Research, Dairy NZ, Ravensdown, Rakaia Dairy),	Sergio.morales@otago.ac.nz Dr Cecile de Klein +64 3 489 9047 cecile.deklein@agresearch.co

management. Our hypothesis is that being more precise 'on all fronts' can not only break the (perceived) pasture productivity ceiling but also reduce GHG emissions intensity and conserve soil organic carbon (SOC). To test this hypothesis, we will use precision-mapping and - management technologies on irrigated dairy farms with soils of contrasting fertility and water holding capacity, and determine the effects of optimising nutrient, irrigation and grazing management on pasture productivity and quality,		
estimate the effects of improved (more precise)		
management on GHG emissions intensity.		
Accelerated soil carbon (C) sequestration through targeted	NZ (Plant &	Dr Mike Beare
use of full inversion tillage when renewing permanent	Food Research,	+64 3 325 9485
pastures and grasslands	Massey Uni,	Mike.beare@plantandfood.c
Accelerating soil C sequestration is considered a promising	Landcare	<u>o.nz</u>
option for mitigating GHG emissions from agriculture.	Research),	
Pasture renewal provides an opportunity to use full	Germany	
inversion tillage (FIT; 30-40 cm) to bury carbon-rich topsoil		
(slowing its decomposition) and to enhance C storage from		
new pasture in the new under-saturated soil surface. Our		
proposal addresses four important gaps in knowledge that		
are needed to provide direct proof-of-function and bring		
the application of FIT-pasture renewal closer to on-farm		
use. These gaps include: Guidelines to identify the most		
suitable soils and sites; 13C tracer experiments to quantify		
net C sequestration; field trials to demonstrate the practical		
applications of FIT-pasture renewal; and modelling effects		
over longer timeframes and across a wider range of soils		
and climates. Conservative estimates suggest that		
FITpasture renewal could sequester an additional 3 -10 Mt C		
in NZ high production grassland (HPG) soils over 30 years		
(0.4 to 1.2 t C/ha/yr).		