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e For independent variables and 95% confidence, inventory uncertainty averaged +58%.
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Agricultural soils emit nitrous oxide (N;0), a greenhouse gas and the primary source of nitrogen oxides
which deplete stratospheric ozone. Agriculture has been estimated to be the largest anthropogenic N,O
source. In New Zealand (NZ), pastoral agriculture uses half the land area. To estimate the annual N,O
emissions from NZ's agricultural soils, the nitrogen (N) inputs have been determined and multiplied by
an emission factor (EF), the mass fraction of N inputs emitted as N;O—N. To estimate the associated
uncertainty, we developed an analytical method. For comparison, another estimate was determined by
Monte Carlo numerical simulation. For both methods, expert judgement was used to estimate the N
input uncertainty. The EF uncertainty was estimated by meta-analysis of the results from 185 NZ field
trials. For the analytical method, assuming a normal distribution and independence of the terms used to
calculate the emissions (correlation = 0), the estimated 95% confidence limit was +57%. When there was
a normal distribution and an estimated correlation of 0.4 between N input and EF, the latter inferred
from experimental data involving six NZ soils, the analytical method estimated a 95% confidence limit of
+61%. The EF data from 185 NZ field trials had a logarithmic normal distribution. For the Monte Carlo
method, assuming a logarithmic normal distribution for EF, a normal distribution for the other terms and
independence of all terms, the estimated 95% confidence limits were —32% and +88% or +60% on
average. When there were the same distribution assumptions and a correlation of 0.4 between N input
and EF, the Monte Carlo method estimated 95% confidence limits were —34% and +94% or +64% on
average. For the analytical and Monte Carlo methods, EF uncertainty accounted for 95% and 83% of the
emissions uncertainty when the correlation between N input and EF was 0 and 0.4, respectively. As the
first uncertainty analysis of an agricultural soils N,O emissions inventory using “country-specific” field
trials to estimate EF uncertainty, this can be a potentially informative case study for the international
scientific community.
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1. Introduction

In soils, nitrogen (N) containing compounds can be transformed
to produce nitrous oxide (N;O), the third most important green-
house gas (Davidson and Kanter, 2014). In addition, N,O is the
primary source of nitrogen oxides which deplete stratospheric
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ozone (Ravishankara et al., 2009). Agriculture has been considered
the largest source of anthropogenic N,O emissions and estimated
to account for about 70% of the total (Davidson and Kanter, 2014).
Pastoral agriculture is practised across 30% of the world's land area,
one-third of cropping land area produces animal feed and the
world's estimated animal feed N,O emissions range from 4.4 to
6.8 Tgly (Herrero et al., 2016). Consequently, the N,O emissions
from pastoral agriculture are substantial, but uncertain.

The N0 emissions from soils can be attributed to the effects of N
inputs (de Klein et al., 2006, 2014a). For pastoral agriculture, the N
inputs include N in fertiliser and the urine and dung excreted by
grazing animals. The mass fraction of N input emitted from soils as
N>O-N has been denoted an emission factor (EF). Consequently, the
N0 emissions can be estimated by a product of N input and EF. This
method includes an inventory of N inputs and EFs following
guidelines developed by the Intergovernmental Panel on Climate
Change (IPCC, http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/
4 _Volume4/V4_11_Ch11_N20&CO2.pdf) for signatory nations to
the United Nations Framework Convention on Climate Change
(UNFCCC).

For the UNFCCC, inventories estimate N,O emissions across
national and annual scales. While N,O emissions can only be
measured at smaller scales, the generalisation of such observations
can be the basis for an inventory. Information about the spatial and
temporal variability or uncertainty of emission measurements can
be informative. For example, ‘hot spots’ have had a large N input
such as urine excreted by grazing animals (Selbie et al., 2015). For
grazed areas, hot spots have been found to be the primary source of
N>O emissions (e.g., Kelliher et al., 2002; Giltrap et al., 2014). The
temporal variation of N,O emissions can be dominated by ‘hot
moments’ (Groffman et al., 2009). For example, over 242 days, half
the total emissions from grazed pasture comprised three ‘events’
over 16 days (Scanlon and Kiely, 2003). Following N input, the
variability of N,O emissions has been related to soil wetness which
depends on rainfall and irrigation (van der Weerden et al., 2012,
2014).

Ideally, an inventory compiler has accurate and representative
information to estimate the emissions. Inventory uncertainty can
be estimated by statistically analysing the input information and
output calculations (Winiwarter and Muik, 2010). Monte Carlo
numerical simulation has been a method used to estimate the
uncertainty of agricultural soil N;O emissions inventories
(Winiwarter and Rypdal, 2001; de Vries et al., 2003; Ramirez et al.,
2008; Milne et al., 2014). For this method, a set of input data has
been determined by sampling from estimated frequency distribu-
tions and the inventory computations repeatedly undertaken to
calculate an output uncertainty statistic such as 95% confidence
limits. Alternatively, provided the inventory can be represented by
a suitable mathematical function and input variable statistics esti-
mated, the output uncertainty statistics can be estimated by an
analytical method (e.g., Kelliher et al., 2007; Kelliher and Clark,
2010).

Analysing inventory uncertainty can provide information about
which factors contribute most to the variability or uncertainty of
the output calculations. While as implied, for accuracy and repre-
sentativeness, the inputs should be determined empirically by a
large number of measurements, we are aware of no studies which
have taken this approach for a national, annual inventory of agri-
cultural soils N>O emissions. For those analysing the uncertainty of
such inventories, a noticeable stumbling block has apparently been
the lack of sufficient “country-specific” EF data. Moreover, to our
knowledge, the correlation of N input and EF variables has not been
determined empirically due to a lack of sufficient “country-specific”

data. In New Zealand (NZ), half the land area is used for pastoral
agriculture. Thus, pastoral agriculture is not only vitally important
to NZ's economy, it is also a major driver of NZ's greenhouse gas
emissions including the agricultural soils N,O emissions inventory.
For these reasons, in NZ, information about pastoral agriculture is
important and available. Consequently, predicated on sufficient
“country-specific” data, analysing the uncertainty of NZ's agricul-
tural soils N,O emissions inventory can be a potentially informative
case study for the international scientific community.

For this paper, an analytical method will be developed to esti-
mate the uncertainty of an inventory representing NZ's agricultural
soil N,O emissions. Estimates will also be made using the Monte
Carlo method and results from the two methods will be compared.
While estimating N input uncertainty will have to rely on expert
judgement, EF uncertainty will be estimated by meta-analysis of
the results from 185 NZ field trials (Kelliher et al., 2014a). As will be
shown, while a correlation between N input and EF affects the
inventory's uncertainty, inventory-scale data were not available to
estimate the correlation. Instead, the correlation will be inferred by
meta-analysis of replicate-level results from experiments involving
six NZ soils (de Klein et al., 2014b; Kelliher et al., 2014b; Venterea
et al., 2015). The estimated uncertainty of NZ's inventory will be
compared with estimates for inventories from other countries.

2. Material and methods

The N0 emissions from agricultural soils (Ey,p) can be esti-
mated by a product of N input and a representative value of EF. For
N input, we need to estimate the annual mass of N returned by the
excreta of grazing animals which includes dairy and beef cattle,
sheep and deer. Thus, we need to determine the number of animals,
a, and mean values of the animal's annual energy requirement (d,
M]J animal~! y~1), the pasture (feed) energy content (e, MJ kg~ [dry
matter] = MJ kg~! DM), the pasture N content, py, and the fraction
of N that will be retained in an animal, ry. We combined these

terms as [a d <%> pn(1 — ry)|.In addition, we need to estimate the

annual mass of N fertiliser applied to agricultural soils across NZ,
most commonly as urea and denoted by term u. An Ey,o equation

was then be written as:
1 44
ENZO = {{ad (E) DN (l —rN) +u} (E)EF (l)

Using the N,O/N, molecular mass ratio (44/28 = 1.57), units on
the right hand side of the equation were converted from Gg N y~!
and Ey,o expressed as Gg N,O yL

For uncertainty analysis, we used data from NZ's Ey, ¢ inventory
for the year 2014 (Ministry for the Environment, 2016). As shown
below, the quantity (a d) needs to be 585 x 10° MJ y~. For this
purpose, the mean values of py, ry and e will be 0.035 (kg N kg~
DM), 0.15 and 11 M] kg~! DM, respectively (Kelliher et al., 2007). By

inserting these 4 values into {a d (%)pN(l - rN)}, we calculated

1582 Gg N y~! the value used for NZ's 2014 inventory. Based on N
fertiliser sales, u will be 377 Gg N y~! (Ministry for the
Environment, 2016). The NZ inventory also accounts for Ey,o from
managed excreta attributed to dairy cattle during milking, crop
residues and cultivated organic soils. For the year 2014, these
totalled 1.5 Gg N,O (Ministry for the Environment, 2016). This
quantity will be added to the result of the calculation using Equa-
tion (1).

To determine a representative EF value, we combined the urine,
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dung and N fertiliser EFs from NZ's inventory and estimated a
weighting factor for each EF. The urine, dung and N fertiliser EFs
were 0.01, 0.0025 and 0.0048 kg N,O N/kg N input, respectively.
Based on NZ's 2014 inventory, we determined that urine was 67% of
the excreta N and dung was 33%. Also based on NZ's 2014 inventory,
excreta comprised 81% of the total N applied to soils, while N fer-
tiliser comprised 19%. Thus, the weighting factor was 0.543
(0.67 x 0.81) for urine, 0.267 for dung and 0.19 for N fertiliser and
the weighted mean EF was 0.007 (Table 1).

The inventory also accounts for the emissions from managed
excreta, crop residues and cultivated organic soils. In addition, the
inventory accounts for indirect emissions of N,O that come from a
proportion of N that volatilises as ammonia (10%), and will be re-
deposited onto soils, and for another proportion of N which
leaches through soils (7%). For uncertainty analysis, as shown
below, we will account for these emissions by firstly adding a factor
to the direct emissions. Then, we will multiply our estimate of Ey, o
by another factor determined by the value which yields the
inventory's sum of the direct and indirect emissions, the total
emissions. There was no uncertainty information about the emis-
sions from managed excreta, crop residues and cultivated organic
soils or the indirect emissions, so no uncertainty will be assigned to
these factors.

The terms in Equation (1) were mean values based on sets of
imperfect measurements or judgements. The uncertainty of each
value was quantified by the fractional standard error (FSE, Tables 2
and 3). As an example, for term d, the notation was FSE[d] = SE[d]/uq
where uy denoted the mean value of d. To determine FSE[EF], the
weighting factors were used again. The corresponding FSE values
were determined by a meta-analysis of results from 185 field trial
across NZ (Kelliher et al., 2014a,b). For example, on average, the FSE
for urine was 0.276 based on 91 field trials at lowland and hill
country, low slope sites (Table 2). The FSE values were the statistical
basis for an analytical method to estimate the uncertainty of NZ's
En,o inventory. This method has been developed in an Appendix.

3. Results
3.1. NZ's Ey,o inventory

Using Equation (1), we estimated NZ's 2014 Ey,o inventory.

Thus, we inserted the values for {ad(%)p,\,(]— )

(=1582 Gg N y ') and u (=377 Gg N y 1), multiplied by the
weighted mean EF (=0.007) and by 1.57 to obtain 21.5 Gg N,O y .
Next, to account for the emissions from managed excreta, crop
residues and cultivated organic soils, we added 1.5 Gg N0 y~!
which gave 23.0 Gg N,O y~! as the estimated direct N,O emissions.
To complete the calculation of total N,O emissions, we need to
include the indirect NO emissions. By the IPCC method used by NZ
for UNFCCC reporting, the total N>O emissions from agricultural
soils for 2014 was 28.6 Gg N,0 y~! (Ministry for the Environment,

Table 1

Component weighting factors and corresponding mean values of EF from New
Zealand's Ey,o inventory which were used to calculate a weighted mean EF for an
equation in the text and equations in the Appendix used to estimate the uncertainty
of NZ's Ey,o inventory.

Nitrogen source Weighting factor EF
Urine 0.543 0.01
Dung 0.267 0.0025
Urea fertiliser 0.190 0.0048
Weighted mean EF 0.0070

Table 2

Fractional standard errors (FSE) from Kelliher et al. (2014a) and the component
weighting factors which were used to calculate the weighted mean FSE of term EF for
an equation in the text and equations in the Appendix used to estimate the uncer-
tainty of NZ's Ey, o inventory.

Nitrogen source Weighting factor FSE

Urine 0.543 0.276
Dung 0.267 0.282
Urea fertiliser 0.190 0.271
Weighted mean FSE 0.277

Table 3

Fractional standard errors (FSE) for the terms in Equation (1) and Equation (A1) in
the Appendix. The FSE for term ry was determined by the FSE for term e on the basis
of CSIRO (2007, see Equation (1.12A)). The FSE values are the statistical basis for
estimating the uncertainty of New Zealand's Ey,( inventory as explained in the
Appendix.

Term in Equation (1) FSE Method used to estimate FSE

a 0.02  Statistics NZ (Kelliher et al., 2007)

d 0.05 Expert judgement (Kelliher et al., 2007)

e 0.05 Expert judgement (Kelliher et al., 2007)

PN 0.01 Expert judgement (Ledgard et al., 2002)

N 0.05 Expert judgement

u 0.03  Expert judgement (Hilton Furness, pers. comm.)
EF 0.277 Statistical analysis of the data in Tables 1 and 2

2016). Thus, a ratio of the total and estimated direct N,O emissions
was 1.23 (= 28.6/23.0). Consequently, we multiplied the estimated
direct N,O emissions by 1.23 to determine the total N,O emissions
as 28.6 Gg N,O y L.

3.2. Ey,p uncertainty by an analytical method assuming N input
and EF were independent

To begin estimating the uncertainty of NZ's Ey,( inventory, we
assumed independence of the terms in Equation (1) and equations
in the Appendix. On this basis, in the Appendix, we developed
Equation (A3) to calculate an FSE for the annual mass of N excreta
returned by grazing animals to agricultural soils, denoted by term x
and its associated FSE[x]. By estimating ry as 0.15 and using the 5
FSE values from Table 3, we calculated FSE[x] was 0.075. We then
used Equation (A4), and by inserting FSE[x] of 0.075, x of 1582 Gg N
y~ L, FSE[u] of 0.03, u of 377 Gg N y~! and FSE[EF] of 0.277, we
calculated FSE[Ey, o] was 0.284. Consequently, 95% of FSE [ENzO]2 was
attributed to FSE[EF]? (=[0.277%/0.284°]*100). As stated, including
the indirect N,O emissions, the total Ey,o was 28.6 Gg N>O y 1 s0
SE[En,0] was 8.1 Gg N,O y~! (= 28.6"0.284). For a 95% confidence
limit, we required twice SE[Ey, o] or 16.2 Gg N,O y~ L. Thus, by these
calculations and assuming a normal distribution, we were 95%
certain that the true value of NZ's Ey,o was 28.6 + 16.2 Gg N,O y!
(+57%) or between 12.4 and 44.8 Gg N0 y~, a (95% confidence)
range of 32.4 Gg N,O y~ .

3.3. E,p uncertainty by an analytical method assuming N input
and EF were correlated

If the terms representing NZ's inventory were correlated, not
independent, the FSE[Ey, o] estimate would be different, depending
on the degree of correlation. To examine the effects of this
assumption, we constructed and analysed another, simpler repre-
sentation of the inventory. As described in the Appendix, this
involved subsuming the terms related to x and u into a single term



332 EM. Kelliher et al. / Atmospheric Environment 148 (2017) 329—336

denoted N input. Then, to determine FSE[N input.EF] using the
Appendix's culminating Equation (A15), we required estimates of
FSE[N input], FSE[EF] and py input, er. In Table 2, we showed FSE
[EF] = 0.277 and using the data in Table 3 with Equations (A3) and
(A4), FSE[N input] = 0.061. To illustrate by a sensitivity analysis, we
calculated FSE[N input.EF] for maximum and minimum values of py
input, E. These calculations were then compared to the FSE[Ey, o] or
FSE[N input.EF] estimate of 0.284 obtained earlier, assuming py input,
egrwas 0 (from independence of N input and EF). Thus, if FSE[N input]
and FSE[EF] were 0.061 and 0.277, respectively, and pn input, EF
was +1 and -1, FSE[N input.EF] was 0.332 (17% larger) and 0.222
(23% smaller), respectively.

To estimate py input, gr for NZ's inventory, we analysed replicate-
level N input and EF data from field and laboratory experiments
involving six NZ soils (de Klein et al., 2014b; Kelliher et al., 2014b;
Venterea et al., 2015). Briefly, for each soil, there were four to six
levels of N input from 100 to 1500 kg N/ha, three to five replicates
per level of N input and py input, EF Was estimated by linear regres-
sion. The mean result was 0.40 + 0.37 for 95% confidence (Table 4).
Inserting pn input, Er Of 0.40, FSE[N input] of 0.061 and FSE[EF] of
0.277 into Equation (A15), we estimated FSE[N input.EF] was 0.304
(7% larger than 0.284 when pn input, er Was 0). Therefore, 83% of

FSE[En,0]*> was attributed to FSE[EF]* (=[0.2772/0.304%]*100).
Moreover, FSE[Ey,o] became 8.7 Gg N0 y~! (= 28.6"0.304) and
assuming a normal distribution the 95% confidence limit was
28.6 + 17.4 Gg N,O y~ ! (£61%).

3.4. En,o uncertainty by the Monte Carlo method

The FSE values in Tables 2 and 3 were also used as the statistical
basis for the Monte Carlo method to estimate the uncertainty of
NZ's Ey, o inventory. A normal distribution was chosen to represent
each variable's distribution with one exception because there was
sufficient evidence to justify a different choice. For EF, the results of
185 NZ field trials (Kelliher et al., 2014a) indicated this variable
should be represented by a log normal distribution (Fig. 1). The

simulation used the same values for {ad (%)pN(l - rN)}, the

weighted mean EF and corresponding FSE (Tables 1 and 2) and the
calculations described earlier to determine Ey,o. Assuming the in-
dependence of variables, the simulation indicated 95% certainty
that a true value of Ey,p was between 16.8 and 46.9 Gg vyl a(95%
confidence) range of 30.1 Gg y~ . The corresponding mean and
median Ep,o values and FSE[Ey, o] were 24.9 and 27.8 Gg y~!and
0.284, respectively. Thus, the simulation's mean was 12% less than
NZ's Ey,o inventory value of 28.6 Gg y~! and the median was 3%
less. Using the simulation's mean as done for the analytical method,
the estimated uncertainty was -32% (= 100 — [100 {16.8/
24.9}]), +88% (= [100 {46.9/24.9}] - 100) and +60% on average with
asymmetry due to the log normal distribution for EF. We also

Table 4

Correlation of N input and N,O EF for six NZ soils determined by meta-analyses of
the replicate data from laboratory incubation studies (Kelliher et al., 2014b; Venterea
et al, 2015) and field trials (de Klein et al., 2014a,b).

Soil Correlation Source

Temuka 0.00 Kelliher et al. (2014b)
Horotiu +0.50 de Klein et al. (2014b)
Te Kowhai 0.00 de Klein et al. (2014b)
Wingatui +0.43 de Klein et al. (2014b)
Wakanui +0.94 Venterea et al. (2015)
Waikari +0.52 Venterea et al. (2015)
Mean +0.40
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Fig. 1. Cumulative frequency distribution of (A) (raw) mean emission factor data from
185 NZ field trials which included cattle and sheep urine and dung and urea fertiliser
(solid line, Kelliher et al., 2014a) and (B) the same data after adding a constant of 0.3
and (base e) logarithmic transformation. The dashed lines are normal distributions
calculated using the data's overall mean and standard deviation.

estimated 95% of FSE[Ey,o]? was attributed to FSE[EF]? (= [0.277%
0.284%]*100), the same percentage estimated by the analytical
method when the variables had been assumed to be independent.
Alternatively, if the variables were positively correlated with a
correlation coefficient of 0.40, the estimated FSE[Ey,o] became
0.304 and the inventory's estimated uncertainty became
-34%, +94% and +64% on average. Moreover, as for the analytical

method, 83% of FSE[En,0]? was attributed to FSE[EF]? (= [0.277?]
0.30421*100).

4. Discussion

EF uncertainty was the principal determinant of Ey,p uncer-
tainty for NZ's inventory. The EF uncertainty was estimated by
meta-analysis of the results from 185 NZ field trials. An estimated
95% and 83% of the uncertainty of NZ's Ey, o inventory was attrib-
uted to EF uncertainty when the correlation between N input and
EF was 0 and 0.4, respectively. The meta-analysis also provided
sufficient evidence to justify representing the EF uncertainty using
a logarithmic normal distribution. This was done using the Monte
Carlo method and the average percentage estimate of Ey,o uncer-
tainty was similar to that by the analytical method which had
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assumed a normal distribution for the EF uncertainty. However, the
Monte Carlo method yielded asymmetrical estimates of Ey,o un-
certainty equal to —32% and +88% and —34% and +94% when the
correlation between N input and EF was 0 and 0.4, respectively. This
has been the first Ey, o inventory uncertainty analysis to estimate EF
uncertainty by meta-analysis of results from “country-specific”
field trials. However, we acknowledge the inference from field trials
to national annual inventory was made across considerable time
and space scales. This also applied to the estimated correlation
between N input and EF. For those field and laboratory experi-
ments, the N input to a plot was increased by increasing N con-
centration of the applied aqueous solution. Across larger scales for
NZ's inventory, we recognize that N input can also be increased by
increasing the number of grazed areas (paddocks) and paddocks
receiving N fertiliser.

To our knowledge, previous accounting for the effect of p input, F
on inventory Ey, o uncertainty has been by sensitivity analysis using
the Monte Carlo method (eg, Ramirez et al., 2008). Alternatively, as
stated, we analysed replicate-level N input and EF data from field
and laboratory experiments involving six NZ soils. Under field
conditions, pn input, F Was similar for two soils studied by de Klein
et al. (2014b) with values about the same as the overall mean,
but for unknown reasons, py input, e Was zero for a third soil. Under
field conditions, N input to soils can be affected by plant N uptake
(Ma et al., 2010). Instead, though artificial, conditions can be
controlled in a laboratory and soil samples incubated without
plants. Under the laboratory conditions studied by Kelliher et al.
(2014b), pN input, Er Was zero for a Temuka soil sampled near
Lincoln. Under the laboratory conditions studied by Venterea et al.
(2015), pN input, EF Was 0.94 for a Wakanui soil sampled near Lincoln
(about 3 km from where the Temuka soil had been sampled, T].
Clough, personal communication) and 0.52 for a Waikari soil
sampled about 90 km away. The Waikanui and Waikari soils were
chosen for their similar texture, pH, carbon content and carbon to N
ratio. For a given N input, the Wakanui soil had a mean EF up to six
time larger than that of the Waikari soil. In response to N input, the
Wiaikari soil was more resistant to nitrite accumulation and the
abundance of microbial genes associated with nitrite oxidation
increased substantially (Venterea et al., 2015). While the py input, £
results for six NZ soils were variable, Venterea et al. (2015) have
developed a useful hypothesis for better understanding the results
of future studies.

The considerable uncertainty of NZ's Ey,o inventory warrants
comparison. For the Monte Carlo method, assuming a logarithmic
normal distribution for EF, a normal distribution for the other terms
and independence of all terms, the estimated 95% confidence limits
were —32% and +88% or +60% on average. For Finland with an Ey, o
inventory calculated using the IPCC method and uncertainty
assessed by the Monte Carlo method, the estimated 95% confidence
limits were —52% and +70% or +61% on average (Monni et al.,
2007). In contrast, using a similar approach, the estimated 95%
confidence limit for the Netherlands Ey, o inventory averaged +42%
(Ramirez et al., 2008). Moreover, also using a similar approach, the
estimated 95% confidence limits for the United Kingdom's (UK's)
En,o inventory were —56% and +140% or + 98% on average (Milne
et al.,, 2014).

As stated, EF uncertainty was the principal determinant of Ey,o
uncertainty for NZ's inventory. Because EF uncertainty has been
attributed to soil wetness, Monni et al. (2007) argued that EF un-
certainty might be reduced by estimating EF using climate data. For
example, spatially- and temporally-disaggregated EFs (500 by
500 m? and daily, respectively) were estimated for dairy cattle

urine across NZ using a predictive relationship with soil water
content and a water balance model implemented using a
geographic information system (van der Weerden et al., 2014).
However, the uncertainty of this calculation methodology has not
been assessed. For the Netherlands, an Ey,o inventory was calcu-
lated using a hydrology and N flow model driven by rainfall and N
input to soils (de Vries et al., 2003). The model's parameters were
estimated from relationships with soil use, soil type and ground-
water level class derived from 500 by 500 m? grid cell data on
digital maps. For this inventory, the estimated 95% confidence limit
was +48% (+twice the standard deviation as a percentage of the
mean which was reported in their Table 17, de Vries et al.,, 2003).
Kros et al. (2012) also calculated an Ey,o inventory for the
Netherlands using a spatial (1 km? grid cells) model and the esti-
mated 95% confidence limit was +38%. Kros et al. (2012) reckoned
de Vries et al. (2003) had over-estimated the inventory's uncer-
tainty by “ignoring spatial correlation”, a criticism which can also
be applied to the IPCC methodology. Kros et al. (2012) accounted for
spatial correlation by using their spatial model and Equation (A13)
developed by Lesschen et al. (2007). While spatial and IPCC
methods used to estimate Ey,o inventories for the Netherlands
have corresponded with some differences in uncertainty assess-
ment, the estimated percentage uncertainties reported by Kros
et al. (2012) and Ramirez et al. (2008) were notably similar.

The effects of uncertainties such as climate change and livestock
production in future have not been determined by this study. While
estimating the consequences of climate change on the N,O emis-
sions from agricultural soils remains uncertain, case studies for NZ
(de Klein et al., 2014a) and the UK (Abalos et al., 2016) suggest
climate change should be expected to correspond with increased
emissions in future. Likewise, in future, the global demand for an-
imal products such as meat should be expected to increase (e.g.,
Thornton, 2010). Increased demand could be met by more animals
and/or increased feed which should also correspond with increased
emissions in future. However, we must be cautious about whether
or not even likely time trends will substantially affect the uncer-
tainty of NZ's Ey, ¢ inventory.

5. Conclusions

The uncertainty of NZ's Ey,o inventory could be estimated by
statistically evaluating the input information and output calcula-
tions by analytical and Monte Carlo methods. This required infer-
ence from the input information across considerable time and
space scales. While the inventory had to be simplified for repre-
sentation, choosing a product of N input and EF was defensible. The
subsequent development of a suitable set of mathematical func-
tions for the analytical method was enabled by Goodman's (1960)
exact expression for the variance of a product. Using the analyt-
ical method's culminating function, the inventory's uncertainty
could be estimated for all levels of correlation between the primary
variables. Results from the analytical and Monte Carlo method
calculations were similar. EF uncertainty was the principal deter-
minant of Ey,o uncertainty for NZ's inventory. An estimated 95%
and 83% of the uncertainty of NZ's Ey, o inventory was attributed to
EF uncertainty when the correlation between N input and EF was
0 and 0.4, respectively. For a mean correlation of 0.40, the inven-
tory's uncertainty increased by an estimated 7% compared to no
(zero) correlation. For the Monte Carlo method, assuming a loga-
rithmic normal distribution for EF, a normal distribution for the
other terms and independence of all terms, the estimated 95%
confidence limits were —32% and +88% or +60% on average.
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Appendix

The NO emissions from agricultural soils (En,o) can be attrib-
uted to the effects of nitrogen (N) input. To proceed, we need to
estimate the annual mass of N returned by the excreta of grazing
animals which includes dairy and beef cattle, sheep and deer. This
requires us to determine the number of animals, a, and mean values
of the animal's annual energy requirement (d, MJ animal 'y~ 1), the
pasture (feed) energy content (e, MJ kg~ ! [dry matter] = M] kg~
DM), the pasture N content, py, and the fraction of N that will be
retained in an animal, ry. We can combine these terms as

[a d <%>p,\,(1 — rN)}. For analysis, we will combine these terms

into an excreta factor called x as

X = ad(%) pn (1 =1y) (A1)

In addition, we need to estimate the annual mass of N fertiliser
applied to agricultural soils across NZ, most commonly as urea and
denoted by term u. An emission factor (EF) is the mass fraction of N
input emitted as N,O-N to the atmosphere. Because we can esti-
mate Ey,o by a product of N input and EF, we can write a simple
equation to represent NZ's Ey, o inventory as:

ENZO =(Xx+u (%) EF (A2)

where the N,O/N; molecular mass ratio (44/28) converts units from
GgNy 'toGgN,Oy L

The terms in equations (A1) and (A2) will be mean values based
on sets of imperfect measurements or judgements. The uncertainty
of each value will be quantified by the fractional standard error
FSE(Tables 2 and 3). As an example, for term d, the notation will be

FSE[d] = %‘” where ug denotes the mean value of dWe can

determine FSE[x] by a root-mean-square approach, recognizing the
mathematical operation involving term ry, as

FSE[x> = FSE[a)® + FSE[d]? + FSE[e]? + FSE[py]?

2
+ {FSE[rN} - i”rN} (A3)

where we have written FSE[x]? to denote (FSE[x])%. To assess the
uncertainty of Ey,p, we can write the following approximation

0.5
FSE [En,0] = {(XZFSE [’z]j::';FSE Mz) +FSE[EF]2} (A4)

An assumption of independence has been made for the terms in
Equations (A2)—(A4) in order to estimate FSE[Ey,¢]. If the terms had
been correlated, the estimate of FSE[Ey,p] would have been

different, depending on the degree of correlation. To introduce the
effects of this assumption, we will construct and analyse another,
simpler representation of the inventory. This will involve sub-

suming { [a d <%>p,\, 1- rN)} + u} (%) into a single term deno-

ted N input, so Equation (A2) can be re-written explicitly as the
product of N input and EF

En,0 = N input.EF (A5)

Assuming independence of the terms in Equation (A5), we
would again follow a root-mean-square approach and write the
following approximation

FSE[En,o0] = (FSE[N input]® + FSE[EF}Z)O’S (A6)

This approximation follows from an exact expression for the
product of independent terms which is given by

. 2 2 . 2 2)9>
FSE[En,o) = (FSE[N input|? + FSE[EF|? + FSE[N input]*FSE[EF?

(A7)

When FSE[N input] and/or FSE[EF] are small, FSE[N input]*FSE[EF]?
will be very small and can be ignored. Based on Equation (A7) and
data given in the paper and Tables 2 and 3, it can be shown

FSE|N input] =

(x+u)?

05
("FSE["]“‘FSEM) — 0.061 and FSE[EF] = 0.277, s0

FSE[N input]*FSE[EF])? = 0.00029. Ignoring this small quantity, the
approximation given by Equation (A6) is shown to be adequate,
yielding FSE[Ey, o] = 0.284, the same estimate which can be calcu-
lated by equation (A7). However, if N input and EF had been
correlated, another (exact) expression would be needed. The sem-
inal study of Goodman (1960) provides such an expression that will
be the basis for our next analysis.

An exact expression for the variance (denoted var) of a product
was developed by Goodman (1960) and we write

2
var[N input.EF] = var[N input]var[EF] + (,uN input> var|EF]
+ (uEF)zvar[N input] + cov {N input?, EFZ]

— (cov[N input, EF))
— 20N inputkgrcov[N input, EF]
(A8)

where up inpue is the mean of N input, ugr is the mean of EF and the
cov[N input, EF] is the covariance of N input and EF.

Given cov[N input?, EF?] is 4un inpuritercoV[N input, EF], based on a
Taylor Series, Equation (A8) may be approximated by

2
var[N input.EF]= var[N input]var[EF] + <,UN input> var [EF)

+ (ugg)?var|N input] — (cov|N input, EF])?
+ 2N inpueMgrCOV[N input, EF] (A9)

The approximation includes two terms involving the covariance
of N input and EF. One is subtracted and the other depends on the
sign of the covariance (when the means are positive). To proceed,
we briefly re-consider the situation when N input and EF are in-
dependent, such that Equations (A8) and (A9) can be reduced to the
first three terms as
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2
var[N input.EF] = var|N inputjvar[EF] + (,uN ,-nput> var[EF]
+ (uge)var(N input]
(A10)
Equation (A10) can be rearranged using an expression for
FSE[N input] = ML) and SEIN input] = (var|N input])®> and py
input. EF = MN inpucter (Decause of independence) to give FSE of the
product [N input.EF] as
SE[N input.EF] _ SE[N input EF]
KN input MEF

FSE|N input .EF] =
KN input.EF

which can be expanded, as before for Equation (A7), and repeated
here in a different order as

FSE|N input.EF] = <FSE[N input]>FSE[EF]?> + FSE[EF]?> + FSEN input]2>

FSE[Ninput.EF]) =

MN input.EF = BN inputMEF + cov[N input, EF)

= UN input/J'EF + PN inputﬁEFSE[N input]SE[EF] (A13)
and
HN inputEF - _ 4 N SE|N input]SE[EF]
MN input MEF N input EF N input MEF
— 1+ P inpur.erFSEIN input|FSE[EF] (A14)

We can use Equation (A12) and (A14) to derive a general
expression for FSE[N inputEF]. This will recognize that

FSE|N input EF] = W Moreover, from Equation (A14) when
input.
N input and EF are correlated, we know

FSE|N input.EF] = SENMPULEF] i ke Thyg for all levels of corre-
KN input HEF N input EF

0.5
(A11)

lation between N input and EF including negative, positive and nil
(independence), we can now write

) 05
{FSE[Ninput]ZFSE[EF]Z + FSE[EF)? + FSE[Ninput)* — (meput.EFFSE[Ninput}FSE[EF}) +2 N input ¢ FSEINinput|FSE[EF| }

Now, when N input and EF are not independent, the covariance
of N input and EF can be expressed in terms of the correlation of N
input and EF, py input, er, Which can be written as cov[N input, EF] = py
input, EFSE[N input]SE[EF]. We can use this expression to re-write
Equation (A9) as

2
var[N input.EF] = var|N input]var[EF] + (uN input) var[EF]

. . 2
+ (ugr)?var(N input] — (ﬂN input rSE[N input]SE[EF ])

+ 20N inputEFPN Input, erSEIN input]SE[EF]
(A12)

From Equation (A12), when N input and EF are positively
correlated with positive means, var[N input.EF] will be greater than
that given by Equation (A10) for independent N input and EF when

2 ) ) L
SEI hmtSHEF > PN input, F > 0. Rearranging the left inequality gives

2> py input, erFSE[N input]FSE[EF], which will certainly be satisfied
when FSE[N input]| and FSE[EF] are less than 1. When N input and EF
are negatively correlated (with positive means), var[N input.EF] will
be less than that in Equation (A10) because the last 2 terms in
Equation (A12) will be negative. Further, when N input and EF are
correlated

(1 + meput’EFFSE[Ninput}FSE[EF})

(A15)
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