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1 Introduction

New Zealand has one of the highest per-capita incidence rates of campy-

lobacteriosis in the world. Understanding the reasons for this is crucial to

reducing the incidence in the future. A major part of this is having a clear

idea of what the sources and pathways of infection are, and identifying which

of these sources and pathways are most prevalent among reported cases.

Source attribution is the process of determining the proportions in which

the various pathways and sources contribute to the total disease incidence.

This information is critical in creating targeted intervention strategies, and

for assessing the effectiveness of such strategies. Unfortunately source at-

tribution of pathogens is rarely accomplished due to numerous difficulties.

Problems include inconsistencies in the traditional methods of data collection

from sporadic cases, the difficulty of detecting smaller outbreaks, and the dif-

ficulties of conducting laboratory analysis of both human and environmental

(including food and water) samples.

The most straightforward way to quantify the effect of an exposure would be

to estimate the numbers of cases that were caused by this exposure. However,
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this number is not estimable from ordinary incidence data, as the observation

of an exposed case does not reveal the mechanism that caused the disease

[6]. In contrast to an outbreak situation, where the attributable risk fraction

for an identified risk factor would be very high, the source of infection in

sporadic cases is more difficult to identify [10].

Traditional approaches to source attribution include full risk assessments,

analysis and extrapolation of surveillance or outbreak data, and analytical

epidemiological studies [1, 3, 4, 5]. Recent approaches include the Propor-

tional Similarity Index (PSI), as well as various statistical models (the Dutch,

Hald and Island models).

The Proportional Similarity Index is a general technique for comparing the

area of intersection between two probability distributions [11]. By comparing

the distribution of sequence types observed among human isolates with the

distribution of sequence types observed among food or environmental sources,

a score can be derived, with a higher score indicating a closer similarity.

Scores are given between 0 and 1, with 1 indicating a complete overlap, and

0 indicating no similarity.

The Dutch model uses the relative occurrence pij of each bacterial subtype i

in each source j with the number of human cases caused by that subtype oi

in order to estimate the number of cases per source λj:

λj =
∑

i

pij∑
j pij

oi.

The Hald model [7] generalises the Dutch model, by adding additional terms

to the estimate for λij, the number of cases of subtype i attributed to source j.

Both type-specific and source-specific terms, in addition to relative consump-

tion of the various sources are added into a Bayesian framework which allows

for uncertainty surrounding each parameter to be explicitly included and

quantified. This model has recently been modified for use on New Zealand

C. jejuni data by P.Mullner et. al. [8] and is detailed further in Section 3.1.
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Finally, the Island model [2] uses a genetics based approach to reconstruct

the genealogy of each isolate. Based on the allelic profiles of each isolate,

mutation and recombination rates are estimated for each source ‘island’,

in addition to migration rates to the human ‘island’. The migration rates

are then used to estimate the relative contribution from each source. This

modelling technique has the advantage in that it can attribute human isolates

that have not yet been observed in any of the source reservoirs - all other

models must discard any such isolates. We give further details of this model

in Section 3.2.

Each of these models are designed to give a single estimate for the proportion

of cases attributed to each source over time - they do not allow for temporal

variation of that attribution. Adding temporal variation to these models is

the main focus of this report. We summarise the application of extensions

to the Hald, Dutch, and Island models for source attribution to the isolates

from a sentinel collection site over a 4 year period, focusing on the temporal

variation in the attribution through time.

2 Data collection

Over the period of 2005 through to 2009, isolates from human cases of campy-

lobacteriosis and environmental and food sources were collected and sequence

typed using Multilocus Sequence Typing (MLST). MLST is based on a se-

quence of 7 housekeeping genes, which are relatively conserved in an evolu-

tionary sense. This technique allows a high level of diversity between different

sequence types, while rationalising this diversity into groups of isolates with

related genotypes. By utilising the relative prevalence of sequence types

within each of the environmental and food sources, one can obtain estimates

on the likelihood of a human isolate arising from those sources.

A total of 1267 human samples that were identified as positive for Campy-

lobactor by ELISA (ProSpecT R, Remel, USA) by MedLab Central, Palmer-
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2005∗ 2006 2007 2008 2009∗ Total
All samples 263 397 359 182 66 1267
Primary samples 200 285 274 144 50 953
Confirmed by PCR 153 224 200 100 41 718
Complete MLST profiles 133 200 181 76 34 624

Table 1: Yearly number of human isolates, from 1st March 2005 through
30th April 2009.

ston North, were sent to the Hopkirk Molecular Epidemiology laboratory

over the period from 1st March 2005 to 30th April 2009. Of these, 953 iso-

lates were identified as primary cases, with the rest duplicate isolates from

the same case, or not from the Manawatu region. 718 of these have been

confirmed as C. jejuni and 624 have complete allelic profiles. Table 1 shows

the number of isolates for each of the years.

In addition, 766 isolates from food and environmental sources have been iden-

tified as C. jejuni and have been sequence typed. The food samples were col-

lected from meat sampled at retail stores in Palmerston North over the same

time period. Fresh whole poultry carcases from each of the four major poul-

try companies were sampled, as was fresh red meat and offal (beef and lamb

mince and liver). Water was sampled from 6 popular river swimming loca-

tions in the Manawatu, and cattle and sheep faeces from farms adjacent to the

catchments of these river sources were also sampled. The recreational swim-

ming sites were Mangapapa stream, Woodville; Manawatu River, Hopelands

picnic reserve, Hopelands; Oroua River, Timona Park, Feilding; Manawatu

River, Albert Street, Palmerston North; Tokomaru River, Horseshoe Bend,

Tokomaru and Kaikokopu Stream, Himatangi Beach.

The source isolates were then grouped into one of four sources: Poultry

(consisting of isolates from the 4 poultry companies), Bovine (beef mince

and liver, as well as cattle faecal samples), Ovine (lamb mince and liver, and

sheep faecal samples), and Environmental (water samples). Table 2 shows

the number of isolates in each source type.

Further details of the data collection and background to the project may
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Source Number of Isolates
Poultry (retail) 391
Bovine (retail and live animal) 116
Ovine (retail and live animal) 168
Environment (water) 91
Total 766

Table 2: Total number of isolates in each source.

be found in the report “Enhancing the surveillance of potentially foodborne

enteric disease” [9].

3 Source attribution modelling

There have been several models proposed for source attribution, each of

which assess the proportion of infections attributable to a particular source

in various ways. These models, however, do not take into account temporal

variation that may occur in the data.

Of the existing models, the Modified Hald and Island models are most

amenable to the incorporation of temporal variation. Each of these models

attribute a human infection to a source with a certain probability, based on

sequence type information, such as from multilocus sequence typing (MLST).

We present the most suitable modification of the Hald model, along with two

different uses of the Island model: Multiple runs of the Island model through

time, and a combined Dutch/Island model.

3.1 The Modified Hald Model

The modified Hald model [8] is a bayesian model of source attribution that

estimates the expected number of infections of each MLST sequence type

attributable to each source. We proposed 4 further modifications to this

model in order to incorporate time dependence of attribution.
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Let λijt, be the expected number of infections of sequence type i attributable

to source j during time period t. Then the observed counts of a particular

sequence type during that time period oit may be given by

oit ∼ Poisson(
∑
j

λijt).

It is clear that λijt will be dependent on the prevalence of each sequence type

on each source, pij, as if a particular sequence type is only ever observed in

a particular source, then one may assume that any human infection of that

sequence type is most likely to originate from that source.

In addition, we assume that the λijt is dependent on some bacteria dependent

factor qi, and a source dependent factor aj, so that

λijt = pijqiaj.

The source dependent factor aj, then, may be thought of as summarising the

ability of a source to act as a vehicle for infections. It thus incorporates any

conditions for the introduction and sustaining of bacterial contamination

throughout the farm to fork chain. The bacteria dependent factor qi, on

the other hand, is a measure of the ability of a particular sequence type

to cause disease, combining information on the virulence, survivability and

pathogenicity of the sequence type.

If there is good information available on the prevalence of particular sequence

types on each of the sources being considered, then one could use point

estimates for the pij directly from the data. This was used in the original

application of the Hald model [7], where Denmark’s extensive surveillance

system meant that accurate point estimates of the pij were available.

In the New Zealand situation, however, we do not have enough data to ensure

that such point estimates would be valid, having only 766 data points over

a period of 4 years. Hence, Mullner et. al. modified the Hald model, by

first modelling the pij using a separate bayesian scheme, thus introducing
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variability in the prevalence estimates.

The time dependence of the λijt’s may then be brought in by:

1. Adding an independent time term bt.

2. Adding time dependence to the prevalence terms pij.

3. Adding time dependence to the bacteria factors qi.

4. Adding time dependence to the source factors aj.

One key problem with the Modified Hald model as presented is the lack of

identifiability. Assuming there is no time dependence, that we have a total of

I sequence types and J sources, and that estimates of pij are available, then

both the qi and aj terms need to be estimated from the oi data points. We

cannot possibly identify the I + J parameters from I data points, and thus

any estimates of these parameters will be necessarily sensitive to the priors

used.

When the model is extended to consider T time periods, then under each of

the 4 models above we have

1. I + J + T parameters from IT data points;

2. I+J parameters from IT data points, with good estimates of pijt being

required;

3. IT + J parameters estimated from IT data points;

4. I + JT parameters estimated from IT data points.

We note that model 1 is useful for modelling dynamic behaviour, however

the independence means that it cannot be used to identify which parts of the

epidemiology are likely to be the cause of the observed changes in attribution.

The variability may have been induced by some change in processing of a
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particular foodgroup (e.g. the use of chemical decontamination in the poultry

industry) or may be due to a bacterial subtype becoming more or less virulent,

or due to consumption of a particular foodgroup decreasing. It allows the

total expected prevalence to change through time, while the distribution of

prevalence across sequence types and source factors does not change. Model

1 is in fact a subset of each of the other models, where we assume that the

time dependent behaviour is independent of source, bacteria and prevalence.

The other models, therefore, will be more useful at explaining any temporal

variation.

Model 2 is problematic as it requires prevalence estimates for each bacterial

sequence type on each source at each time step. With just 766 data points

over the 4 year period, split over up to 92 bacteria types and up to 10

sources, further subdividing of the time periods is unfeasible. Furthermore, a

temporal analysis of the prevalence data indicates that much of the variation

is likely due to the order in which data was collected, rather than there

being underlying temporal changes in the prevalence of individual bacteria

on different sources.

Figure 1 shows the number of isolates collected through time from each food

source, showing that the data are clustered in time, with large numbers of

isolates coming in from the same source at the same time, as evidenced by the

early peaks in the poultry source. Some sources have also been sampled only

in the latter years, which may bias the 2005 and 2006 attribution towards

those sources that had more data collected. Any true temporal change in

the prevalence, therefore, is likely swamped by variance due to the collection

method and the likelihood of the sample yeilding an isolate. It is suggested,

therefore, that this model is not appropriate in the New Zealand context

with the data available.

Of the final two models, model 4 is the preferred option. Identifiability is

improved in comparison to model 3, given that the number of sequence types

I is typically far greater than the number of sources J . The key assumption

of Model 4 is that the relative prevalance between sequence types on a par-
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Figure 1: Number of isolates from each of the sources per month.

ticular source is constant through time: Only the level of infection caused

by all sequence types may change. Any temporal variation, therefore, is at-

tributable to changes in either the prevalence of positive isolates in the source,

or the bacterial levels present on those positive isolates, or a combination of

the two. Both a higher prevalence or higher counts of bacteria among the

infected sources imply a larger potential to cause infection. Given that the

source factor applies to all bacterial subtypes on a given source, one expects

that any changes in these factors are likely to have a larger impact on source

attribution than changes in particular bacterial factors. Improvements to

food processing, for instance, are likely to reduce bacterial contamination

(both in terms of prevalence and counts) across all sequence types, which

may dramatically alter the attribution. Thus, from a regulatory point of

view, changes in the source factors are likely of more interest. Model 4,

therefore, has been chosen as the final version of the Modified Hald model.
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As with previous versions of the Hald model, the prevalence parameters are

found using a separate Bayesian process, by assuming that that we can model

pij as

pij = πjrij

where πj is the prevalence over all types in source j, and rij is the rela-

tive occurence of type i in source j. Assuming independent priors rij ∼
Dirichlet(1, 1, ..., 1) and πj ∼ Beta(1, 1), a bayesian analysis shows that we

obtain independent Dirichlet and Beta posteriors for the rij and πj.

We then use the posterior means and standard deviations for the prevalence

pij to estimate the parameters αij, βij of a Beta distribution, and use this

Beta distribution as the prior for the pij in the source attribution model.

Due to convergence problems for very small αij values, we limit αij to be

at least 1, and adjust βij so that the means match. This split modelling

approach allows for some variation in the pij around the actual data values,

thus accounting for the lack of prevalence data.

The final model is then:

• Model the pij, using independent Dirichlet and Beta priors, and obtain

posterior means and variances.

• Estimate αij and βij via the method of moments, so that the posterior

distribution pij ∼ Beta(αij, βij).

• Model λijt using the Beta prior on pij and suitable priors on the qi and

ajt parameters.

Lastly, we need priors for the qi and ajt parameters. The sequence type fac-

tors qi are modelled as random observations from a lognormal distribution

log(qi) ∼ N(0, τ), where the hyperparameter τ (with prior Gamma(0.01, 0.01))

controls the variation in characteristics between types. Similarly, the source

factors ajt are given priors of ajt ∼ Exp(λ). Thus, we consider each source

factor at each time period to be independent to the previous ones, preferring
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the data to show any correlation through time rather than attempting to

model this correlation directly. Sensitivity analysis showed that λ could take

a fairly large range without altering the output significantly, and a value of

λ = 0.002 was used for the final model.

3.2 The Island Model

The Island Model [2] uses an evolutionary model to assign sequence types to

a particular ‘island’ or source population. Sequence types of known origin

(i.e. isolates from food and environmental sources) are first used to estimate

the evolutionary parameters for each island. The posterior distribution of the

evolutionary parameters are then used infer the origin of the human isolates,

and in doing so, estimate the proportion of human cases attributable to each

source population. This modelling strategy allows sequence types previously

unobserved in any of the sources to be assigned to a source, based on its

similarity to other sequence types from that source.

In addition to being able to assign previously unobserved isolates, the second

major benefit of the Island model is that it is relatively fast to run, and can

be used to obtain reasonably robust estimates in a matter of minutes, in

comparison with the Hald model that may take several hours to run.

We can incorporate dynamic time behaviour in two separate ways. The first

and most obvious approach is to divide the data up into separate intervals of

time, and run the model separately on each interval. We need to ensure that

this is done in a way that allows sufficient data resolution in each interval

in order to obtain robust estimates. With the sparsity of the New Zealand

data, it is suggested that a sliding window approach may be the most useful,

where we infer for the current time period using data from that time period

combined with data from previous time periods.

As with the modifications to the Hald model, it is thought that the prevalence

of isolates within the sources is unlikely to change as rapidly as the result-
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ing human isolates, as the human isolates are more significantly affected by

improvements in food handling and industry processing. Thus, we consider

a wide window of 12 months for the source isolates, and a smaller window

of 2 months for the human isolates. The much wider smoothing window of

the source isolates helps to reduce the effect of clustering in time due to the

data collection regime.

The second use of the Island model is to use a single run based on all source

and human isolates to obtain the probabilities that each particular human

isolate has come from a particular source. Once found, we then run a subse-

quent analysis on the human isolates alone that takes these probabilities in

addition to the number of each human sequence type at each time interval

oit to obtain the total source attribution for that time period. Let sjt be the

attribution to source j at time period t. Then

sjt =

∑
i oitbij∑

i oit

, (1)

where bij is the probability that sequence type i is attributable to source j,

as given by the Island Model.

This modelling approach allows for very quick analysis of newly collected

human isolates as they come in, but does have the same assumptions as the

Modified Hald model in terms of assuming that the attributions of each se-

quence type are constant in time. This assumption is equivalent to assuming

that sequence types are likely adapted to a particular source, and that any

further adaptation to a new source is likely to coincide with a change in the

biology, and thus the introduction of a new sequence type. We consider this

a valid assumption for the time frame that we are dealing with, with the

major benefit being the use of all available source isolates to determine the

attribution.
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4 Results

All models were run over the period from 1st March 2005 through 30th

April 2009, utilising 766 source isolates grouped into 4 sources: Poultry,

Ovine, Bovine, and Environmental. The environmental source includes iso-

lates found in environmental water, or attributed to wildbirds such as ducks

and geese. A total of 624 human isolates over this same time period are also

examined.

S
ou

rc
e 

pr
ob

ab
ili

ty

Poultry

Cattle

Sheep

Environment

2005 2006 2007 2008

0
0.

2
0.

4
0.

6
0.

8
1

Figure 2: Source attribution for human isolates for 1st March 2005 through
30th April 2009, using bi-monthly intervals using the modified Hald Model.

Figure 2 shows the modified Hald model run using bi-monthly time intervals,

with 5 chains of 10000 iterations following a burn-in period of 2000 iterations.

The bi-monthly time period was chosen based on obtaining reasonably accu-

rate estimates whilst still allowing sufficient temporal resolution to easily see

variation in the attribution through time. Once the 27 human isolates that
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were not present in the source isolates were excluded, this gave an average of

24 isolates per time period. As can be seen, poultry isolates dominate, par-

ticularly in the summer peaks. Of note is the reduced attribution to poultry

during 2008, which corresponds to increased measures at reducing poultry

contamination within the poultry industry. However, there is an increase

again in the 2008/2009 summer period.
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Figure 3: Source attribution for human isolates for 1st March 2005 through
30th April 2009, based on runs of the Island model a sliding window of 12
months for source isolates and 2 months for human isolates.

Figure 3 shows the Island model run over the period from 2005 through 2009,

where the model has been run monthly, using a historical sliding window of

12 months for the source isolates and 2 months for the human isolates. Thus,

the estimate for April uses source isolates going back to May of the previous

year and human isolates from both March and April. We see a similar picture

as with the Hald model, with peaks of poultry attributed infection in the

summer months, and a large dip in poultry attributed isolates during 2008.
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Figure 4: Source attribution for human isolates for 1st March 2005 through
30th April 2009, using bi-monthly intervals with the Dutch/Island model.

Lastly, Figure 4 shows the results from the Dutch/Island model run, where

the attribution of each human isolate is computed first using the Island

model, and then final attribution is computed at each time period using

equation 1. The time periods were bi-monthly, as used for the Hald model.

Here we see the effect of the summer peaks seems to have vanished, possibly

due to the averaging effect of computing the attribution across the entire

time period at the same time. The dip in poultry attribution during 2008,

however, is still present, though is of a much lower magnitude. The results

of this modelling approach appear to give a far broader attribution to the

poultry sources than the other two models. Even sequence types that are tra-

ditionally thought of as being ruminant types such as ST-61, which appears

only 4 times in the poultry sources compared to 27 times in the ruminant

sources, is equally attributed to the poultry and ruminant sources by the

Island model. Further research is needed to pin point why this is occurring.
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Figure 5: Attribution to poultry of human isolates by year, using the Hald
model, with 95% confidence levels.

The results in Figures 2 to 4 are mean results of the attribution estimates

– they do not show how much variability there is about those estimates.

Given that the time periods considered are short at just two months, we

have only a small number of isolates available each time period (between 7

and 52, with a mean of 24), and hence variation around these estimates are

large. Figure 5 shows a 95% confidence envelope for the poultry attribution

based on the Hald model. Longer time periods reduce this considerably, at

the disadvantage of removing some of the interesting temporal behaviour.

Figure 6 for instance, shows the attribution for each year, along with 95%

confidence bars, which are much reduced.

We must also consider the results in Figures 2 to 4 in light of the total number

of human isolates over time. A reduction in the proportion attributed to a

source may not imply a reduction in the number of cases attributed to that
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Figure 6: Source attribution with 95% confidence intervals of human isolates
by year, using the Hald model. ∗Note that 2005 precludes January and
February, and 2009 includes January through April only.

source – the proportion may be decreasing due to increases in attribution

to others sources. Similarly, if the number cases attributed to one source

reduces, the proportion of cases allocated to a second source may increase,

even though there is no increase in the number of cases.

Assuming that any isolates that have not yet been sequence typed may be

attributed to sources in the same proportions as those that have been typed,

we may scale the proportions from each of our models by the number of

notified cases reported to our lab that were identified as primary cases in

order to estimate the expected number of cases attributable to each source.

Figures 7 and 8 show these results for the modified Hald and Island models

respectively. The summer peaks, most of which are attributed to poultry

sources, can be clearly seen, with the peak for summer 2008/2009 appearing
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Figure 7: Estimated number of human cases per month attributed to each
source from the modified Hald model.

to reach about half the level of previous years. The dramatic reduction in

poultry attribution for the first half of 2008 can be seen to correspond to a

reduction in isolates from all sources, although the reduction in poultry is of a

higher magnitude. Ruminant strains on the whole appear relatively stable at

between 10 and 20 cases per month, whilst attribution to the environmental

source is between 2 and 8 cases per month.

5 Model Comparison

Each of the modelling approaches for dynamic source attribution have pro-

vided consistent estimates for the relative contribution of each of the food

and environmental sources to the burden of human campylobacteriosis in

the Manawatu. The temporal component of the models have clearly high-
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Figure 8: Estimated number of human cases per month attributed to each
source from the Island model.

lighted the seasonal summer peak of campylobacteriosis notifications, which

has been attributed mainly to the poultry food source.

Of the three modelling approaches, it is clear that the Modified Hald model

and the dynamic version of the Island model are of more use than the com-

bined Dutch/Island model. The latter has to over-smoothed the temporal

variation, making key features such as the summer peaks in poultry less dis-

cernable. We thus focus on the Modified Hald and Dynamic Island models.

Table 3 gives a summary of these two models. The ability to assign human

isolates that have yet to be observed in any of the sources is the key advantage

of the Island model over the Hald model. There are 27 human isolates that

have yet to be observed in the source isolates, so the absense of these isolates

in the analysis by the Hald model must be considered. Furthermore, the

attributions that the Island model makes based on genetic similarity, are
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Model Pros Cons
Hald Explicit modelling of Slower computation time.

expected counts.

Bayesian framework allows Unable to model human isolates
variation about unknown that don’t appear in the sources.
parameters.

Confidence Intervals are No genetic similarity used.
easy to obtain.

Model modifications are
easily implemented.

Island Faster computation time. Confidence Intervals are
hard to obtain.

Utilises genetic similarity Modifying the model
based on allelic profiles. is difficult.

Allows attribution of
human isolates that don’t
appear in the sources.

Table 3: Comparison of models

also useful in other analyses. For example, by allocating isolates based on the

Island model output to a most likely source, one can then look to modelling

the likelihood of getting a ruminant related strain in comparison to a poultry

strain, based on covariates such as rural living, age, or contact with animals.

The running time of the two models differs significantly, with the Hald model

taking approximately 10 times as long as the Island model on the 4 year

dataset. Furthermore, the Island model, being essentially just multiple runs

of the same model on a changing dataset, is readily amenable to parallelisa-

tion which would bring further speed ups, with the time-consuming portion

of the model scaling linearly with the number of processors available. This

speed advantage must be considered in the light of how regularly the model is
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to be run, in comparison to how long it takes. On a standard 2GHz desktop

computer, the Hald model takes around 4.5 hours to complete, so this is of

no disadvantage even if running the model daily.

The advantages of the Hald model lie in its ease of extension and that es-

timates always come with confidence intervals. Further analysis, such as

incorporating specific temporal models, and testing hypotheses are relatively

simple within the Bayesian framework. The clear seasonality in the poul-

try attributed cases, and their contribution to the summer peak in Campy-

lobactor notifications as seen in Figure 7, for instance, would suggest that

a model where the poultry temporal factors had a seasonal term might be

investigated. Such a model may allow the fitting of simpler temporal factors

to the non-poultry sources, such as linear trends, or factors with a lower tem-

poral resolution, allowing simple hypotheses to be tested, such as whether or

not cases attributed to a particular source are increasing or decreasing over

time. The inclusion of confidence intervals is essential to any further analy-

sis – particularly when the intervals are reasonably large, as is indicated by

Figure 5.

6 Recommendation

We recommend that the Modified Hald model is the most appropriate for

dynamic source attribution of human cases to sources. The model allows

factors associated with each source to change through time, such as adjusting

for changes in food preparation practises or industry processing. The Island

model should not be disregarded, however, as it is very useful at assigning

particular isolates to a source, allowing categorisation of human cases for

further modelling purposes. This, however, can be done without the temporal

component in place.

Finally, we note that the models may be applicable to other diseases. Mull-

ner et. al. [8] showed an application of the Hald model to Salmonella in
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New Zealand, and the original Hald model was developed for Salmonella in

Denmark. The key assumptions that need to hold for the model to be appli-

cable to other diseases is that the distribution of source isolates is reasonably

stable through time, and that a sufficient number of human isolates are avail-

able in order to balance the requirements of temporal resolution and model

accuracy. A temporal resolution allowing an average of at least 20 isolates

per time period would be an appropriate starting point.
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