NEW ZEALAND FOOD MONITORING PROGRAMME

FOOD SAFETY AND HYDROPONICALLY CULTIVATED VEGETABLES

June 1999

Client Report FW9939

FOOD SAFETY AND HYDROPONICALLY CULTIVATED VEGETABLES

D J Belton National Food Programme Manager

C F Graham Project Leader S Hasell Peer Reviewer

DISCLAIMER

This report or document ("the Report") is given by the Institute of Environmental Science and Research Limited ("ESR") solely for the benefit of the Ministry of Health, Public Health Service Providers and other Third Party Beneficiaries as defined in the Contract between ESR and the Ministry of Health, and is strictly subject to the conditions laid out in that Contract.

Neither ESR nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for use of the Report or its contents by any other person or organisation.

ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance of the following people:

- Cliff Dawson for recruiting participants and for developing the questionnaire.
- The many Health Protection Officers who obtained samples for the project and participated in HACCP assessments.
- The staff at both Auckland and Christchurch Public Health Laboratories for the microbial analysis.
- Rosemary Whyte and Sally Hasell for guidance and peer review.
- Andrew Hudson for the literature review and guidance.

CONTENTS

SUMMARY	I
RECOMMENDATIONS	.II
INTRODUCTION	1
PROJECT PLAN	2
HACCP QUESTIONNAIRE	2
SAMPLING AND MICROBIAL ANALYSIS	2
Sampling Plan Laboratory Procedure	
RESULTS	5
Microbiological Results	
DISCUSSION	8
	•
REFERENCES	9
REFERENCES	
APPENDIX I: Literature Review	12
	12 13
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans	12 13 13 13
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds	12 13 13 13 13
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process	12 13 13 13 13 14
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water	12 13 13 13 13 14 14
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water Overall System	12 13 13 13 13 14 14 14
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water Overall System Food Poisonings and Reported Microbiological Loading	12 13 13 13 13 14 14 14 15
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water Overall System Food Poisonings and Reported Microbiological Loading Outbreaks	12 13 13 13 13 14 14 14 15 15
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water Overall System Food Poisonings and Reported Microbiological Loading Outbreaks Surveys of Retail Produce	12 13 13 13 13 14 14 14 15 15 15
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water Overall System Food Poisonings and Reported Microbiological Loading Outbreaks	12 13 13 13 13 14 14 15 15 15 15
APPENDIX I: Literature Review Seed Sprouts Potential Microbiological Hazards in Production General Scheme for Seed Sprout Production, e.g. Mung beans Contaminated Seeds Sprouting/Germination Process Contaminated Water Overall System Food Poisonings and Reported Microbiological Loading Outbreaks Surveys of Retail Produce Potential Hazards in Leafy Vegetable and Herb Production	12 13 13 13 13 14 14 14 15 15 15 18

LIST OF TABLES

Table 1: Organism Isolation Results (all categories of sample)	5
Table 2 E. coli isolations by category	5
Table 3 E. coli isolations from sprouts.	6
Table 4 E.coli isolations from different sprout types	6
Table 5 Levels of <i>E.coli</i> found in sprouts.	6
Table 6 Control Point Non-Implementations	7
Table 7 Range of Control Point Non-implementations per Sprout Producer	7
Table 8: Some Outbreaks of Food Poisoning with Seed Sprouts as the Implicated Vehicle1	5
Table 9: Results of Microbiological Testing of Sprouted Seeds 1	6
Table 10: Some Outbreaks of Food Poisoning with Leafy Vegetables and Herbs as the Implicated Vehicle	.7
Table 11: Bacterial Pathogens Isolated from Raw Vegetables 1	8
Table 12 Critical Control Point Analysis of Seed Sprout Production 1	9

LIST OF FIGURES

Figure 1: Comparison of Microbiological and HACCP Results	8
Figure 2: General scheme for seed sprout production	.13

SUMMARY

This project examined three categories of hydroponically grown vegetables, from throughout New Zealand, for the presence of pathogens and indicator organisms. The three categories chosen (leafy vegetable, sprouts and herbs) may be eaten in an uncooked state and so present a potential vehicle of pathogenic organisms.

There are no recent data on the incidence of microbial hazards in hydroponically grown vegetables in New Zealand, but seed sprouts have been implicated in outbreaks overseas and for this reason a more intensive survey of this category was done. This involved a HACCP based questionnaire to evaluate the procedures used. A comparison of microbial results and the questionnaire responses was performed.

In total 291 samples, comprising 46 sprout samples from eight identified producers, a further 71 sprout samples from commercial retail outlets, 114 leafy vegetable samples, and 60 herb samples were tested.

No pathogens were found but *Escherichia coli* was isolated from 11.7% of the samples. This was broken down further to show 12.8 % of sprouts, 14% of leafy vegetables and 5% of herbs contained *E. coli*. This indicates that there is a small and variable potential risk of the three categories of hydroponically grown vegetables harbouring a pathogen.

The HACCP questionnaire results showed that there is considerable scope to increase the number of control points used in hydroponic vegetable production. Growers should be encouraged to use seed disinfection as the primary defence against contamination of their product as this has been identified as the most important control point. The implementation of HACCP based food safety programmes in hydroponic growing operations will minimise the risk of contamination.

RECOMMENDATIONS

Recommendation: Seed disinfection should be promoted as the primary defence against contamination of hydroponically cultivated vegetables.

Recommendation: Hydroponic vegetable growers should adopt HACCP based food safety programmes appropriate for their products.

INTRODUCTION

Hydroponics are defined as "the cultivation of plants, without using soil, by feeding them on chemical solutions". To replace soil, inert media (such as expanded clay, growool, Perlite and vermiculite) may be used. These contain no plant nutrients in themselves and nutrients are supplied in the water used to irrigate the crop. In media-less systems, no media are used except for an initial "starter cube".

This description may give the impression that pathogenic organisms which are normally associated with contamination by soil will not be a problem with hydroponically grown vegetables, but it should be noted that in, for example, seed sprout production the seed itself will have been grown conventionally and so may harbour soil organisms. However, it seems likely that contamination of vegetables grown hydroponically should be easier to prevent than with similar foods grown traditionally.

In New Zealand a number of hydroponically grown foods are produced. This project focused on lettuce and spinach (collectively termed "leafy vegetables" here), herbs, and seed sprouts. These products are in more intimate contact with the nutrient source than are, for example, tomatoes (although overhead irrigation does occur in some systems). All of these foods may be eaten in an uncooked state and so present a potential vehicle of pathogenic microorganisms.

Of the hydroponically grown foods, seed sprouts have achieved recent prominence with several US regulatory authorities issuing advisories informing people who may be immunocompromised not to eat uncooked sprouts after a recent spate of outbreaks of *Salmonella* and *E. coli* O157:H7 in California. The literature data available (See Appendix I, Literature Review) are almost entirely related to seed sprouts because of the emergence of outbreaks associated with sprout consumption.

Despite the fact that vegetables are generally regarded as low risk foods it is clear that they can in fact harbour a range of pathogens. Given that these foods are not necessarily cooked before consumption they therefore pose a risk to the consumer.

Seed sprout production has been relatively well researched and hazards are quite well defined. However, no data were found which specifically addressed hydroponic vegetables other than bean sprouts. There are no recent data on the incidence of microbial hazards in these foods in New Zealand or on the adoption of HACCP systems by the industry.

PROJECT PLAN

- All producers of the three categories of hydroponically grown vegetables were identified.
- A HACCP questionnaire for the sprout producers was developed.
- Health Protection Officers arranged sampling dates with the identified producers. This was organised to allow for the sampling of different production runs where possible. It was also arranged in conjunction with the laboratories to ensure manageable numbers of samples arriving at any one time for analysis.
- A sampling plan for the collection of a suitable number of samples from the different categories was developed.
- Where appropriate the HACCP questionnaire was completed and sent to the project team for analysis.
- Samples submitted to the appropriate laboratory.
- Samples tested and reported.
- All results analysed and report prepared.

HACCP QUESTIONNAIRE

For sprout production a HACCP questionnaire (Appendix II) was developed from the flow chart (Figure 2, Appendix I) describing seed sprout production, and identifying points where potential hazards could occur (Table 12). Each of the originally identified eight sprout producers was assessed against this questionnaire on the first of the visits to the premises. During the commercial retail sampling two further producers were identified, but were not included in the HACCP analysis.

SAMPLING AND MICROBIAL ANALYSIS

Sampling Plan

Hydroponic vegetable samples comprising:

46 sprout samples

114 leafy vegetables

60 herb samples

were taken from hydroponic vegetable producers' premises throughout New Zealand between October 1998 and May 1999. A further 71 sprout samples were obtained from commercial retail outlets throughout New Zealand. This provided a total of 291 samples for analysis.

A total of 291 samples tested achieves a 95% confidence of detecting a defect if 1% of samples are defective and randomly taken. The confidence levels for detecting a defect in the individual sample types are:

Seed sprouts: 95 % if there is between 2-3% defective product. Leafy vegetables: 95% if there is between 2-3% defective product. Herbs: 95% if there is 5% defective product.

The small number of producers identified required repeat visits to each to obtain the total sample numbers. Each producer was sampled on at least five occasions. Because of the particularly small number of sprout producers, to increase the statistical robustness of the results, sample numbers were increased by the additional 71 samples from commercial

outlets to give a total number of 117 sprout samples. The production source of the 71 extra samples of sprouts is illustrated in Table 3.

A minimum sample size of 120g was required. Samples were placed in sterile plastic bags or if possible left in their original container, chilled and delivered to the appropriate laboratory.

Laboratory Procedure

Each sample was tested for the following pathogens and indicator bacteria:

- Campylobacter
- Escherchia coli
- Escherichia coli O157
- Listeria monocytogenes
- Salmonella
- Coagulase positive staphylococci

These analytes were selected because:

E.coli provides an indication of faecal contamination and hence the potential risk for contracting a food-borne illness.

Escherichia coli O157, *Salmonella, L monocytogenes* and coagulase positive staphylococci have been found in these types of foods (particularly sprouts) as described in the literature review, and so these organisms were selected as being suitable for analysis.

Campylobacter is a major cause of food borne illness in New Zealand and was included to ascertain the prevalence in hydroponically grown vegetables.

The sprout samples were also examined for *Bacillus cereus* as this organism has been implicated in small outbreaks involving sprouts, in the USA. It was seen as an opportune time to test for the presence of *B. cereus* in sprouts in New Zealand.

The Microbiological Reference Criteria for Food (1995) state in 5.5, Cultured seeds and Grains (bean sprouts, alfalfa etc) and 5.25, Salads-vegetable or fruit-excluding combination with meat, that there should be no *Salmonella* spp or *E coli* present in cultured seeds and/or vegetable salads. The limit for coagulase positive staphylococci in salads is set in 5.25 at 1000/g. These limits were selected for this study. The "General Microbiological Reference Criteria for *Listeria monocytogenes*" does not require raw vegetables to be free of *Listeria* as there is no listeriocidal step in their production. However as outbreaks of listeriosis have been linked to vegetable products it was decided to place a limit of 1000/g of *Listeria monocytogenes* to ensure that any potentially significant number of this organism was recorded. *Bacillus cereus* can be found in vegetable products in low numbers but has also been implicated in outbreaks (National Advisory Committee on Microbial Criteria for Foods, 1999). It was decided to place limits of 1000/g for this organism, again to ensure that potentially significant numbers were recorded. *Campylobacter* spp was required to be absent in the samples in this study. These limits are shown in Table 1.

Hydroponic vegetable samples were submitted to ESR Public Health Laboratories at Auckland or Christchurch for analysis. Test methods used were based on those described in the APHA "Compendium of methods for microbiological testing of foods" (1995).

RESULTS

Microbiological Results

Results of microbiological analyses of the 291 hydroponic vegetable samples are summarised in Table 1.

Analysis	Limits*	Not Detected	Isolated [#]
Listeria monocytogenes	1000^{a}	291	0
Campylobacter	0	291	0
Salmonella	0	291	0
Escherichia coli	0^{b}	251	34
Escherichia coli O157	0	291	0
Coagulase positive	1000^{c}	290	1
staphylococci			
Bacillus cereus	1000 ^c	117**	0

Table 1: Organism Isolation Results (all categories of sample)

[#] =Isolated (above set limit); ^a = lower limit of detection 100 cfu/g; ^b = lower limit of detection 3 cfu/g; c = lower limit of detection 10 cfu/g; **=only sprout samples were tested for *B. cereus*.

The one coagulase positive staphylococcus detected above the set limit was from a leafy vegetable sample and investigations suggested that this was in fact probably a result of contamination at sampling and therefore may not be significant. There were 3 other isolations of coagulase positive staphylococci from samples that were below the 1000 cfu/g limit, and 3 isolations of *B. cereus* from sprout samples that were below the 1000 cfu/g limit. These isolations were not regarded as significant.

The positive isolations of *E. coli* have been broken down by sample type and these data are summarised in Table 2.

Table 2*E. coli* isolations by category

Sample	Number tested	Number (%) with <i>E coli</i>
Sprout	117	15 (12.8)
Leafy vegetable	114	16 (14.0)
Herbs	60	3 (5.0)
Total	291	34 (11.7)

The sprout samples were derived from both producers and commercial retail outlets (supermarkets). In Tables 3, 4 and 5 are presented the results of a more detailed E. *coli* isolations from these sprout samples.

Producer	Number positive when	Number positive when	Total positive
No.	sampled at producer	sampled at supermarket	
1	0/7	11/49	11/49 (22%)
2	0/5	NS	0/5
3	0/5	NS	0/5
4	0/6	0/2	0/8
5	0/6	0/1	0/7
6	1/6	0/1	1/7 (14%)
7	0/5	NS	0/5
8	2/6	0/2	2/8 (25%)
9	NS	1/1	1/1 (100%)
10	NS	0/4	0/4
Unknown	NS	0/11	0/11
Total	3/46 (6.5%)	12/71 (17%)	15/117 (13%)

Table 3*E. coli* isolations from sprouts.

NS= Not Sampled

As can be seen in table 4 the majority of E coli isolations (6/15, 40%) from sprouts were in fact from alfalfa sprouts. The remaining 60% were from the other varieties tested, which may also include alfalfa in mixtures or samples not clearly identified as to seed type.

Table 4*E.coli* isolations from different sprout types

Bean type	No. with <i>E.coli</i>	% with <i>E.coli</i>
Alfalfa	6/44	17
All other	9/73	12

Table 5Levels of *E.coli* found in sprouts.

Producer no.	Counts >3 - <20	Counts >20<1100	Counts >1100	Total no. samples tested
1	1 (supermarket)		10 (supermarket)	56
6	1 (supermarket)			7
8	1 (producer)	1 (producer)		8
9			1 (supermarket)	1

HACCP Questionnaire Results

The questionnaire covered all aspects of hydroponic vegetable sprout production from seed purchase through to distribution. The eight sprout producers responses were examined and the control point implementation results are shown in Appendix III.

Analysis of the responses allowed identification of the most common control points and the number of premises not implementing these control points (Table 6).

Table 6 Control Point Non-Implementations

Control Point	Number of Producers Not Implementing
Seed sanitised	6/8
Product washed prior to harvest	6/8
Harvest wash water chilled	6/8
Harvest wash water sanitised	6/8
Chilled distribution	5/8
Seeds certified pathogen free	4/8
Germination water disinfected	4/8
Growing medium sanitised	4/8
Food hygiene training received	4/8
Seeds inspected	3/8
Separation between growing and packing	3/8
Protective clothing worn	3/8

The number of control point non-implementations varied between producers. Table 7 below lists this number per sprout producer.

Table 7	Range of Control Po	oint Non-implementations	per Sprout Producer
---------	---------------------	--------------------------	---------------------

Number of Control Points Not Implemented	Number of Producers
0-2	0/8
3-4	2/8
5-6	0/8
7-8	2/8
9-10	3/8
11-12	1/8

Microbiological results showed two of the sprout producers had product that contained *E. coli* (Table3). These results have been incorporated into a graph comparing this failure with the number of control points not implemented for each of the producers (Figure 1).

Food Safety and Hydroponically Cultivated Vegetables

Figure 1: Comparison of Microbiological and HACCP Results

Error! Not a valid link. NB The lighter bars (producers 6 & 8) are the two positive *E. coli* producers

DISCUSSION

The microbiological survey of the three vegetable categories produced no isolations of the pathogens tested for. However all three types had $E \ coli$ present (see Table 2) suggesting there is a potential for pathogens from faecal contamination to be present, as $E \ coli$ is a common indicator of such contamination.

For sprouts, the sprouting process creates ideal conditions for the exponential growth of bacteria and if low numbers of pathogens are present on the seed the sprouting conditions may allow for their proliferation. The indicated potential for pathogens to be present in these types of food is a risk to human health that needs to be controlled.

The analysis of the HACCP questionnaire completed by the sprout producers showed there is considerable scope to increase the number of control points used in the hydroponic sprouting and cultivation of these products. The two producers that had *E. coli* present in samples taken directly from their premises had non-implementation rates of control points at the higher end of the scale. This suggests that the more comprehensive the HACCP based management programme is, the lower the risk of a microbiological failure occurring.

All of the outbreaks referred to in Table 8 had contaminated seed as their primary cause. Therefore disinfection of the source seeds is required as a primary CCP. A study (Jaquette *et al.*, 1996) has determined that traditional disinfection processes reduced the number of *Salmonella stanley* greatly but did not result in reliable elimination of the organism. If present, *Salmonella stanley* was capable of attaining a population of 10^7 /g during commercial production and handling. These authors investigated both chlorine and heat treatments. A recommended heating step was to expose seeds to a temperature of 57 to 60° C for no more than 5 minutes (or seed viability is lost), and a recommended chlorine wash was at 2,000-4,000 µg/ml. However, even this concentration is not high enough to guarantee removal of this species of *Salmonella*.

Similar results were reported by Beuchat (1997) who found that viable *Salmonella* remained after 10 minutes exposure to 1,800 and 2,000 μ g/ml available chlorine from sodium or calcium hypochlorite, 6% hydrogen peroxide or 80% ethanol. While treatment did result in a 1000 fold reduction in numbers it was postulated that bacterial cells are protected from the action of these chemicals due to lodgement in crevices.

The conclusion would appear to be that exposure of seeds to a solution containing approximately 2,000 μ g/ml available chlorine is the method of choice. This has been substantiated by investigations of outbreaks in the USA. It was found that the outbreaks were associated with producers not disinfecting seeds, applying treatments inconsistently or using disinfectants at low levels. This can be compared to producers not associated with illness who consistently used seed disinfection with 20,000 ppm calcium hypochlorite. (National Advisory Committee on Microbiological Criteria for Foods, 1999). This aspect of sprout production is under active research.

Of the eight sprout producers surveyed in this study only two sanitise seed before sprouting. It is unclear from the two responses in the questionnaires how frequently the procedure is used or what concentration of chlorine is used. The processes used for the production of sprouted seed offer ample opportunity for cross contamination from a few seeds or sprouts to the entire production lot. (National Advisory Committee on Microbiological Criteria for Foods, 1999).

Recommendation: Seed disinfection should be promoted as the primary defence against contamination of hydroponically cultivated vegetables.

One of the control points identified was the use of seed certified as pathogen free. Although epidemiological investigations frequently identified seeds as the most likely source of contamination of sprouts, laboratory analyses have often been unable to isolate pathogens from implicated seed. This suggests that contamination may be sporadic and at low levels. While a negative result does not guarantee the absence of pathogens, a positive result would allow a producer to avoid using seed lots that have been shown to contain pathogens (National Advisory Committee on Microbiological Criteria for Foods, 1999). Questions must be asked regarding the guarantee of seeds being "pathogen free" in light of these findings and producers should be advised of the limitations of such testing.

The results gathered from this study suggest that leafy vegetables and to a lesser extent herbs also have the potential to contain pathogens. To minimise this risk it is advisable for all producers to implement a HACCP based risk management plan .. Table 12 has a comprehensive list of critical control points that will assist in the safe production of hydroponically grown vegetables.

Recommendation: Hydroponic vegetable growers should adopt HACCP based food safety programmes appropriate for their products.

REFERENCES

- Andrews, W.H., Wilson, C.R., Poelema, P.L., Romero, A. and Mislivec, P.B. (1979) Bacteriological survey of sixty health foods. Applied and Environmental Microbiology 37, 559-566.
- Andrews, W.H., Mislivec, P.B., Wilson, C.R., Bruce, V.R., Poelma, P.L., Gibson, R., Trucksess, M.W. and Young, K. (1982) Microbial hazards associated with bean sprouting. Journal of the Association of Official Analytical Chemists 65, 241-248.
- Anonymous (1998) An outbreak of *Escherichia coli* O157:H7 infections associated with leaf lettuce consumption. International Food Safety News **7**, 12.
- Barrett, E., Lin, M., Woolard, D., Hackler, R., Martin, H., McWilliams, D., Rouse, B., Willis, S., Rullan, J., Miller, G., Henderson, S., Pearson, J., Beers, J., Davis, R. and Saunders, D. (1997) Outbreaks of *Escherichia coli* O157:H7 infection associated with eating alfalfa sprouts-Michigan and Virginia, June-July, 1997. Morbidity and Mortality Weekly Report 46, 741-744.
- Beuchat, L.R. (1997) Comparison of chemical treatments to kill *Salmonella* on alfalfa seeds destined for sprout production. International Journal of Food Microbiology **34**, 329-333.
- Garland, J.L.(1994) The structure and function of microbial communities in recirculating hydroponic systems. Advances in Space Research 14, 383-386.

- Grabowski, D.J., Tiggs, K.J., Hall, J.D., Senke, H.W., Salas, A.J., Powers, C.M., Knott, J.A., Nims, L.J. and Sewell, C.M. (1989) Epidemiologic notes and reports. Common source outbreak of giardiasis-New Mexico. Morbidity and Mortality Weekly Reports 38, 504-407.
- Hara-Kudo, Y., Konuma, H., Iwaki, M., Kasuga, F., Sugita-Konishi, Y. Ito, Y and Kumagai, S. (1997) Potential hazard of radish sprouts as a vehicle of *Escherichia coli* O157:H7. Journal of Food Protection **60**, 1125-1127.
- Harmon, S.M., Kautter, D.A. and Solomon, H.M. (1987) *Bacillus cereus* contamination of seeds and vegetable sprouts grown in a home sprouting kit. Journal of Food Protection **50**, 62-65.
- Itoh, Y., Sugita-Konishi, Y., Kasuga, F., Iwaki, M., Hara-Kudo, Y., Saito, N., Noguchi, Y., Konuma, H and Kumagi, S. (1998). Enterohaemorrhagic *Escherichia coli* O157:H7 present in radish sprouts. Applied and Environmental Microbiology 64, 1532-1535.
- Jaquette, C.B., Beuchat, L.R. and Mahon, B.E. (1996) Efficacy of chlorine treatment in killing *Salmonella stanley* inoculated onto alfalfa seeds and growth and survival of the pathogen during sprouting and storage. Applied and Environmental Microbiology **62**, 2212-2215.
- Kapperud, G., Rorvik, L.M., Hasseltvedt, V., Hoiby, E.A., Iversen, B.G., Staveland, K., Johnsen, G., Leitao, J., Herikstad, H., Andersson, Y., Langeland, G., Gondrosen, B. and Lassen, J. (1995) Outbreak of *Shigella sonnei* infection traced to imported iceberg lettuce. Journal of Clinical Microbiology 33, 609-614.
- Mahon, B.E., Poenkae, A., Hall, W.N., Komatsu, K., Dietrich, S.E., Siitonen, A., Cage, G., Hayes, P.S., Lambert-Fair, M.A., Bean, N.H., Griffin, P.M. and Slutsker, L. (1997) An international outbreak of Salmonella infections caused by alfalfa sprouts grown from contaminated seeds. Journal of Infectious Diseases 175, 876-882.
- Morales, A., Garland, J.L. and Lim, D.V. (1996) Survival of potentially pathogenic humanassociated bacteria in the rhizosphere of hydroponically grown wheat. FEMS Microbiology Ecology **20**, 155-162.
- O'Mahony, M., Cowden, J., Smyth, B., Lynch, D., Hall, M., Rowe, B., Teare, E.L., Tettmar, R.E., Rampling, A.M., Coles, M., Gilbert, R.J., Kingcott, E. and Bartlett, C.L.R. (1990) An outbreak of *Salmonella saint-paul* infection associated with bean sprouts. Epidemiology and Infection 104, 229-235.
- National Committee on Microbial Criteria for Foods. (1999) Microbiological Safety Evaluations and Recommendations on Sprouted Seeds (Draft).
- Patterson, J.E. and Woodburn, M.J. (1980) Klebsiella and other bacteria on alfalfa and bean sprouts at the retail level. Journal of Food Science **45**, 492-495.
- Ponka, A., Andersson, Y., Siitonen, A., de Jong, B., Jahkola, M., Haikala, O., Kuhmonen, A. and Pakkala, P. (1995) Salmonella in alfalfa sprouts. Lancet **345**, 462-463.
- Portnoy, B.L., Goepfert, J.M. and Harmon, S.M. (1976) An outbreak of *Bacillus cereus* food poisoning resulting from contaminated vegetable sprouts. American Journal of Epidemiology **103**, 589-594.
- Pritchett, R. and others (1997) Outbreak of cyclosporiasis-Northern Virginia-Washington, D.C.-Baltimore, Maryland, Metropolitan area, 1997. Morbidity and Mortality Weekly Reports 46, 1-3.
- Prokopowich, D and Blank, G (1991) Microbiological evaluation of vegetable sprouts and seeds. Journal of Food Protection **54**, 560-562.
- Splittstoesser, D.F., Queale, D.T. and Andaloro, B.W. (1983) The microbiology of vegetable sprouts during commercial production. Journal of Food Safety **5**, 79-86.

Tauxe, R., Kruse, H., Hedberg, C., Potter, M., Madden, J. and Wachsmuth, K. (1997) Microbial hazards and emerging issues associated with produce. A preliminary report to the National Advisory Committee on Microbiologic Criteria for Foods. Journal of Food Protection 60, 1400-1408.

APPENDIX I: Literature Review

Hydroponics are defined as "the cultivation of plants, without using soil, by feeding them on chemical solutions". To replace soil inert media (such as expanded clay, growool, Perlite and vermiculite) may be used which contain no plant nutrients in themselves and instead nutrients are supplied in the water used to irrigate the crop. In media-less systems no media are used except for an initial "starter cube".

This description may give the impression that pathogenic organisms which are normally associated with contamination by soil will not be a problem with hydroponically grown vegetables, but it should be noted that in, for example, seed sprout production the seed itself will have been grown conventionally and so may harbour soil organisms. However, it seems likely that contamination of vegetables grown hydroponically should be easier to prevent than with similar foods grown traditionally given proper controls.

In New Zealand a number of hydroponically grown foods are produced but this project focused on lettuce and spinach (collectively termed "leafy vegetables" here), herbs, and seed sprouts. These products are in more intimate contact with the nutrient source than are, for example, tomatoes (although overhead irrigation does occur in some systems). All of these foods may be eaten in an uncooked state and so present a potential vehicle for pathogenic micro-organisms.

Of the hydroponically grown foods seed sprouts have achieved recent prominence with several US regulatory authorities issuing advisories informing people who may be immunocompromised not to eat uncooked sprouts after a recent spate of outbreaks of *Salmonella* and *E. coli* O157:H7 in California. The literature data available are almost entirely related to seed sprouts because of the emergence of outbreaks associated with sprout consumption.

There is some other information available on vegetables in general but this information concerns conventionally grown produce. These areas are therefore covered only briefly as the information may not be wholly applicable to hydroponic vegetables, but it does serve to indicate the types of problems that might occur, primarily due to the use of contaminated water for irrigation or because of contamination during handling. We might expect that the recent rise in awareness of foodborne disease involving fruits and vegetables as the vehicles in the USA will lead to the growth of information in this area. There will also probably be an apparent rise in incidents where fruits and vegetables are implicated because of this increased awareness.

Despite the fact that vegetables are generally regarded as low risk foods it is clear that they can in fact harbour a range of pathogens. Given that these foods are not necessarily cooked before consumption they therefore pose a risk to the consumer.

Seed sprouts have been well researched and hazards are quite well defined. However, no data were found which specifically addressed hydroponic vegetables other than bean sprouts. In addition there appears to be no data for New Zealand produce. This F13 project was timely given the paucity of data available.

Seed Sprouts

Potential Microbiological Hazards in Production

General Scheme for Seed Sprout Production, e.g. Mung beans

A generalised scheme is shown in Figure 2

Figure 2: General scheme for seed sprout production

Mung Beans from Store Pre-Germination Wash Wash in hypochlorite \downarrow Rinse Rinse in water \downarrow Germination 24h at 27°C \downarrow 4-7 d at 20°C Growth \downarrow Husk Removal Agitated in chlorinated water \downarrow Packaging Bags or punnets Distribution

Contaminated Seeds

The aerobic plate count (APC) of dry seeds has been reported to vary from $<3.0 \times 10^3$ to 4.0 x 10^6 /g, and similarly coliforms have been found in high numbers (Propokowich and Blank, 1991; Splittstoesser *et al.* 1983). Since the seeds are soaked before sprouting and seeds contain suitable nutrients to permit microbial growth then any bacteria present on the seeds at this stage will be able to grow and potentially reach high numbers. While Propokowich and Blank (1991) failed to isolate *Salmonella* and *Listeria* from dried seeds, it is evident from the data presented here that a major problem in seed sprouting is the contamination of the original dried seeds. Outbreaks of *Salmonella* and *E. coli* O157:H7 have been attributed to seed contamination and have been detected on unsprouted seeds (e.g. Andrews *et al.*, 1979; Itoh *et al.*, 1998). However, detection of pathogens on unsprouted seeds is considered difficult (Ponka *et al.*, 1995).

Harmon *et al.* (1987) found that, of 98 batches of sprouting seeds (alfalfa, mung bean and buck wheat) intended for domestic use, 57% contained *Bacillus cereus* spores at levels ranging from 3 to >500 /g. However alfalfa and mung bean sprouts were found to be poor substrates for the growth of this organism and so were considered low risk, but buck wheat acted as a good substrate and allowed *B. cereus* to grow to levels where it would be likely to cause food poisoning. These authors also investigated the effect of washing and cooking on

these sprouts and found that washing reduced numbers by around 1 log unit, except with buck wheat sprouts where washing was less effective. Heating sprouts at 95°C for 20 minutes also appeared to be much less effective at lowering the numbers of *B. cereus* on the wheat sprouts when compared to the alfalfa and mung bean sprouts.

Despite these findings a small outbreak due to the presence of *B. cereus* on sprouted soy, mustard and cress seeds has been reported (Portnoy *et al.*, 1976) with the organism present at levels as high as 7.6 x 10^7 /g on sprouted mustard seeds. It seems possible that problems with *B. cereus* depend on the species of the seed being sprouted or, possibly, on the strain of *Bacillus* involved.

Sprouting/Germination Process

Salmonella has been shown to grow on mung beans and alfalfa beans during the germination process (Andrews *et al.*, 1982), achieving a 3-6 log increase in numbers. *Bacillus cereus* can also grow as described above. Splittstoesser *et al.* (1983) noted a 2 log increase in APC and faecal coliform numbers during the first 2 days of germination/sprouting, but also observed that staphylococci did not grow significantly.

E. coli O157:H7 rapidly increases by 3-5 log cycles during germination (Hara-Kudo *et al.*, 1997). Itoh *et al.* (1998) demonstrated that this organism was present on both the outer and inner surfaces of radish sprouts raised from purposely contaminated seeds. Treatment with mercuric chloride of the outer surfaces of the sprouts was insufficient to kill all of the organisms present.

Contaminated Water

Hara-Kudo *et al.* (1997) found that exposure of only the roots to contaminated water resulted in the edible parts of the plant becoming contaminated. Therefore irrigation via the roots only can pose a hazard to the whole of the sprout.

Overall System

One source of information concerning the behaviour of potential pathogens is NASA because of the proposed use of hydroponic systems in long space flights. Such systems are envisaged to act as recycling stations by removing carbon dioxide, producing oxygen and treating "grey water". It seems that space flight results in a depressed immune system and so renders crew susceptible to pathogens that may be found in their environment (Morales *et al.*, 1996). Work has been carried out to determine the ability of pathogens to adhere to the roots of wheat and to grow and proliferate within the rhizosphere both with and without the normal flora. Essentially it was determined that the density and composition of the natural rhizosphere flora played an important role in the ability of potential pathogens to adhere and survive on wheat roots, with most of the organisms tested reducing to levels below the detection limit in the presence of the normal flora.

In other work Garland (1994) found that 70-90% of the bacteria present in a hydroponic system are associated with the rhizosphere. Therefore a circulating water decontamination unit would only kill an average of 20% of the whole system population even if it were 100% efficient. Bacteria were also located in biofilms on equipment surfaces. The author concluded

that control of overall microbial proliferation would be difficult without negatively impacting the health of the plants, and that efforts on control should focus on inhibiting deleterious bacteria in the system. This was not attempted in this study.

Food Poisonings and Reported Microbiological Loading

Outbreaks

Seed sprouts have been identified as the vehicle in numerous outbreaks, some of which are summarised in Table 8 (this is not a comprehensive list of outbreaks). In all cases the source of contamination was determined to have been brought into the growth and harvesting systems on the seeds. For example an international outbreak in the USA and Finland was traced back to seeds supplied by a Dutch company (Mahon *et al.*, 1997).

Table 8:Some Outbreaks of Food Poisoning with Seed Sprouts as the Implicated
Vehicle.

Sprout Type	Pathogen Implicated	Number of	Reference
		Cases	
Mung bean	Salmonella saint-paul	143	O' Mahoney et al. 1990
Alfalfa	Salmonella	>313	Ponka et al. 1995
	bovismorbificans		
Alfalfa	Salmonella stanley	≥242	Mahon et al., 1997
Alfalfa	Escherichia coli O157:H7	60	Barrett, E et al. 1997
Radish	Escherichia coli O157:H7	>6,000	Itoh <i>et al.</i> , 1998
Soy, mustard and	Bacillus cereus	4	Portnoy et al. 1976
cress			

Surveys of Retail Produce

Results of microbiological testing of seed sprouts are shown in Table 9.

The total number of organisms as assessed by the Aerobic Plate Count (APC) is high when compared to other foods, but these figures were not considered to be unusually large for fresh vegetables (Patterson and Woodburn, 1980). Numbers of faecal coliforms appeared to be very high, and a large component of the population were identified as being *Klebsiella*, an organism which is not necessarily derived from faecal contamination and may grow in association with plant material. However the organism is an opportunistic pathogen and may cause disease in people with weakened immune systems.

Potential Hazards in Leafy Vegetable and Herb Production

The range of microbiological hazards associated with these products is primarily associated with the presence of contaminated water or with contamination by a food handler. In conventional production systems the use of uncomposted manure as a fertiliser, or direct contamination from livestock faeces are also sources of contamination Some examples of outbreaks associated with such products and the sources of the pathogen are given in Table 10.

Sprout (n=sample size)	APC (x 10 ⁸ /g)	Total coliforms (/g)	Faecal coliforms (MPN/g)	Klebsiella (/g)	Other information	Reference
Alfalfa (n=23)	1.2-13	0.1-620 x 10 ⁵	2.4-240 x 10 ⁵	0.1-36 x 10 ⁶	Bacillus cereus, Yersinia enterocolitica, Salmonella and Shigella negative	Patterson and Woodburn, 1980
Bean (n=20)	1.2-13	0.1-250 x 10 ⁵	1.1-240 x 10 ⁵	0.1-72 x 10 ⁶	Bacillus cereus, Yersinia enterocolitica, Salmonella and Shigella negative	Patterson and Woodburn, 1980
Alfalfa (n=18)	2.7-22.5	-	3.6->1,100	-	4/18 Staph aureus positive	Prokopowich and Blank, 1991
Mixed (n=6)	5.2-30.0	-	3.6->1,100	-	5/18 Staph aureus positive	Prokopowich and Blank, 1991
Onion (n=6)	3.6-37.8	-	3.6->1,100	-	4/18 Staph aureus positive	Prokopowich and Blank, 1991
Mung (n=5)	0.6-1.1	-	-	-	Fungi isolated	Andrews et al. 1982
Alfalfa (n=5)	7.7-8.7	-	-	-	Fungi isolated	Andrews et al. 1982
Mung	Mean =1	Mean $= 10^7$	-	-	0/13 Salmonella positive, 2/16 10^4 /g B. cereus, 14/16 $< 10^3$ /g B. cereus	Splittstoesser et al. 1983
Alfalfa	0.7-7	1.4-16 x 10 ⁷	-	-	-	Splittstoesser et al. 1983
Mixed salad	0.8-9.2	2.5-17 x 10 ⁸	-	-	-	Splittstoesser et al. 1983

Table 9: Results of Microbiological Testing of Sprouted Seeds

Food Safety and Hydroponically Cultivated Vegetables

Product	Pathogen	Possible Source(s) of	Number	Reference
Implicated	Involved	Contamination	of Cases	
Lettuce	Shigella sonnei	Irrigation with sewage or contaminated drinking water, fertilisation with sewage sludge or compost with human faeces, accidental flooding with contaminated water	110	Kapperud <i>et al</i> . 1995
Lettuce Giardia		Contaminated water (?)	42	Grabowski <i>et al.</i> 1989
Lettuce	Escherichia coli O157:H7	Contaminated fertiliser, runoff from higher fields grazing cattle, cattle contamination of irrigation water, contamination of produce by faeces from other animals (sheep, deer)	40	Anonymous 1998
Lettuce	Hepatitis A virus	-	-	Cited in Tauxe <i>et al.</i> (1997)
Green salad	Norwalk-like virus	-	-	Cited in Tauxe <i>et al.</i> (1997)
Basil	Cyclospora	Food handler	Approx. 300	Pritchett <i>et al.</i> (1997)

Table 10:Some Outbreaks of Food Poisoning with Leafy Vegetables and Herbs as
the Implicated Vehicle.

N.B. These incidents were reported for traditionally grown produce.

Some data for the isolation of pathogens from raw vegetables are presented by Beuchat (1996). Data from this table for vegetables that were the subject of the F13 study are given in Table 11.

It is apparent from the information presented in these tables that vegetables can be significant sources of pathogenic bacteria, protozoa and viruses.

Vegetable	Country	Pathogen	Prevalence
Coriander	Mexico	<i>E. coli</i> O157:H7	2/10 (20%)
Fennel	Italy	Salmonella	4/89 (4.5%)
Leafy vegetables	Malaysia	Listeria	5/22 (22.7%)
		monocytogenes	
Lettuce	Italy	Salmonella	82/120 (68.3%)
	Lebanon	Staphylococcus	14.3%
	Netherlands	Salmonella	2/28 (7.1%)
	Spain	Salmonella	5/80 (6.3%)
	USA	Aeromonas	
Parsley	Egypt	Shigella	1/250 (0.4%)
	Lebanon	Staphylococcus	7.7%
	Spain	Salmonella	1/23 (4.3%)
Salad Greens	Egypt	Salmonella	1/250 (0.4%)
	UK	Staphylococcus	13/256 (5.1%)
Salad Vegetables	Egypt	Shigella	3/250 (1.2%)
	Egypt	Staphylococcus	3/26 (8.3%)
	Germany	L. monocytogenes	6/263 (2.3%)
	Northern Ireland	L. monocytogenes	4/16 (25%)
	UK	Yersinia	
		enterocolitica	
Spinach	Spain	Salmonella	2/38 (5.2%)
	USA	Aeromonas	

Table 11: Bacterial Pathogens Isolated from Raw Vegetables

Approaches to Safe Hydroponic Vegetable Production

All of the outbreaks referred to in Table 9 had contaminated seed as their primary cause. Therefore disinfection of the source seeds is required as a primary CCP. A study (Jaquette *et al.*, 1996) has determined that traditional disinfection processes reduced the number of *Salmonella stanley* greatly but did not result in reliable elimination of the organism. If present, *Salmonella stanley* was capable of attaining a population of 10^7 /g during commercial production and handling. These authors investigated both chlorine and heat treatments. A recommended heating step was to expose seeds to a temperature of 57 to 60° C for no more than 5 minutes (or seed viability is lost), and a recommended chlorine wash was at 2,000-4,000 µg/ml. However, even this concentration is not high enough to guarantee removal of this species of *Salmonella*.

Similar results were reported by Beuchat (1997) who found that viable *Salmonella* remained after 10 minutes exposure to 1,800 and 2,000 μ g/ml available chlorine from sodium or calcium hypochlorite, 6% hydrogen peroxide or 80% ethanol. While treatment did result in a 1000 fold reduction in numbers it was postulated that bacterial cells are protected from the action of these chemicals due to lodgement in crevices.

Table 12 Critical Control Point Analysis of Seed Sprout Production

Control Point	Hazard	Control Measure
Raw materials:	Mould or bacterial growth due to	Dry storage/ humidity and moisture
dried beans	damp storage conditions	control of beans
	Contamination by birds, rodents or	Pest control programme
	insects	1 0
	High microbial loading	Use of approved suppliers
	Contamination by foreign matter	Inspection, sieving and washing
	Contamination by pesticides	Discard seeds
packaging	Contamination by birds, rodents or	Pest control programme
materials	insects	
	Contamination by dirt	Clean storage environment
Soaking and	Growth of surface microbial	Surface decontamination of seeds
Germination of	contamination	
<u>Seeds</u>		
	Contamination from dirty growth	Cleaning and disinfection of recycled
	containers	germination containers
	Contamination from water supply	Disinfection of water supply
Growth of Bean	Excessive microbial proliferation	Use of disinfected irrigation water
<u>Sprouts</u>		
	Contamination from dirty growth	Cleaning and disinfection of recycled
	containers	germination containers
	Contamination from water supply	Disinfection of water supply
Harvesting/	High microbial levels on the	Application of control measures before
Washing Sprouts	harvested sprouts	harvesting
	Contamination from wash water	Chlorination of wash water
	Proliferation of micro-organisms in	Chilling and chlorination of wash tank
	wash tank water	water
	Contamination of wash tank	Cleaning and disinfecting wash tank
	surfaces	system daily at the end of production
	Collection bin contamination	Clean/disinfect collection bins
Packing	Contamination from unsanitary	Personnel hygiene control, regular hand
	handling practices	washing, glove changing and cleaning
		and sanitation of equipment
	Cross-contamination from raw	Well designed factory layout and
	material, germination and growing	drainage system. Controlled movement
	areas	of staff and equipment
	Metal fragments in product	Use metal detector
<u>Storage</u>	Microbial growth	Store at $5^{\circ}C$ +/-2. Limited shelf life.
<u>Distribution</u>	Microbial growth	Distribution chill chains at $5^{\circ}C$ +/-2.
	Use of out of date product	Date label and stock rotation control
<u>Consumer</u>	Storage abuse of product leading to	Clear instructions to the consumer on
	microbial growth	storage, shelf-life and product
dried beans packaging packaging materials Soaking and Germination of Seeds Growth of Bean Sprouts Harvesting/ Washing Sprouts Packing Storage Distribution		preparation.

The conclusion is that exposure of seeds to a solution containing approximately 2,000 μ g/ml available chlorine is the method of choice, but it must be borne in mind that this is not a guarantee that all *Salmonella* will be destroyed. This aspect of sprout production is under active research.

Other CCPs (Table 12) were adapted from an internet resource provided by the International Sprout Growers Association (http://www.isga-sprouts.org/haccp.htm). These seem to be quite comprehensive and cover aspects of other vegetables grown using hydroponic systems.

APPENDIX II: HACCP Questionnaire

HYDROPONICALLY GROWN VEGETABLES PROJECT

HACCP QUESTIONNAIRE - SPROUT PRODUCERS

This questionnaire should be completed on the <u>first</u> occasion that the sprout producer is visited. <i>Please complete a flow diagram of the process at the rear of the questionnaire.

P	remises:			
0	perator:			
A	ddress:			
P	erson Interviewed:	Contact Phone N	lumber:	
H	PO Name:	Date:		
V T	egetable grown within a protective structure?		Yes 🕿	No
S	EED			
1.	From where is seed sourced?			
2.	Is seed certified pathogen free:		Yes 🕿	No
	If yes, how is it certified? Specify:			
3.	Is seed inspected for evidence of contamination of	on receipt?	Yes 🕿	No
4.	What type of contamination, if any, is normally o	bserved? Specify:		
5.	Is seed washed prior to use?		Yes 🕿 No) A
6.	Is seed sanitised prior to use?		Yes 🕿 No	• A
	If yes, how?			

SOAKING AND GERMINATION

 7. Are containers sanitised l 8. What type of water suppl Surface/Spring/Well/Por 	y is used? (Plea.	se circle)		No 🕿
 Surface/Spring/Well/Bor 9. Is the water supply disinf If Yes, please specify (in 	fected?		Yes 🖀	
GROWING				
10.Are animal fertilisers use	ed?		Yes 🕿	No 🕿
3. Is the growing medium sa	anitised?		Yes 🏝	No 🕿
If Yes, please specify me	thod:			
12.Are growing containers c	eleaned and saniti	ised between batches?	? Yes 🖀	No 🕿
HARVESTING				
13.Is product washed prior of	or post harvest? (.	Please tick one box)		
Prior	The Post	T N/A	L	
If applicable, please outli	ne the process: _			
14.Is wash chilled?				
If Yes, please specify ten	ıp:			
15.Is wash water sanitised?			Yes 🕿 No 🕿	N/A 🖀
If Yes, please specify how	w (include norma	l chlorine level where	e applicable):	
16.Where wash water storag	ge tanks are used,	are these sanitised?	Yes 🕿	No 🕿

PACKING

17. Are packing materials stored so as to avoid contamination?	Yes 🖀 No 🖀
18.Is there separation between growing and packing areas?	Yes 🖀 No 🖀
19.Are packing staff appropriately dressed in protective clothing? STORAGE	Yes 🖀 No 🖀
20.Is packed product stored under temperature controlled conditions?	Yes 🖀 No 🕿
Please specify temperature:	
DISTRIBUTION	
21.Is product distributed under temperature controlled conditions?	Yes 🖀 No 🕿
Please specify temperature:	
22.Is product date marked?	Yes 🕿 No 🕿
23.Is product distributed?	
a) Locally	Yes 🕿 No 🕿
b) Regionally	Yes 🖀 No 🖀
c) Nationally	Yes 🖀 No 🖀
STAFF TRAINING	
24.Do staff receive food safety training?	Yes 🖀 No 🖀
Please specify:	
BACTERIOLOGICAL TESTING	
25.Is bacteriological testing of product or environment carried out?	Yes 🖀 No 🖀
If yes, please specify nature and range of test programme:	

Completed form and flow diagram should be returned to: Cliff Dawson Southern Public Health Services PO Box 1364 Invercargill

APPENDIX III: Hydroponically Grown Vegetables Project

Critical Control Point	Produc	er Number						
SEED	1	2	3	4	5	6	7	8
1. Grown under cover	Y	Y	Y	Y	Y	Y	Y	Y
2. Certified pathogen free	Y	N	Y	Unknown	Ν	N	Y	Ν
3. Inspected	Y	Y	Ν	Y	Y	N	Ν	Y
4. Washed	Ν	Y	Y	Y	Y	Y	Y	Y
5. Sanitised	Y	Ν	Y	Ν	Ν	Ν	Ν	Ν
SOAKING AND GERMINATION								
6. Containers sanitised	Y	Y	Y	Y	Cleaned only	Y	Ν	Y
7. Water disinfected	Y	N	Y	Y	N	Ν	Y-Town supply	Ν
GROWING								
8. Animal fertilisers used	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
9. Medium sanitised	Y	N	Ν	N/A	Ν	Y	Ν	Y
10. Containers sanitised between batches	Y	Y	Y	Y	N-Hot water only	Y	Y	Y
HARVESTING								
11. Product washed prior to harvest	N	Y	Ν	Ν	Ν	N	Y	Ν
12. Product washed post harvest	Y	Ν	Y	Y	Y	Y	Y	Y
13. Wash water chilled	Y	Ν	Ν	Y	Ν	Ν	Ν	Ν
14. Wash water sanitised	Y	Ν	Y	Ν	Ν	Ν	Ν	Ν
15. Wash water storage tanks sanitised	Ν	N/A	Y	N/A	N/A	N/A	N/A	N/A
PACKING								
16. Packaging stored safely	Y	Y	Y	Ν	Y	Y	Y	Y
17. Separation between growing and packing	Y	Ν	Y	Y	Ν	Ν	Y	Y
18. Protective clothing	Y	Ν	Y	Ν	Y	Ν	Y	Y
STORAGE				_			_	
19. Chiller storage	Y	Y	Y	Y	Y	Ν	Y	Ν
DISTRIBUTION				_				
20. Chilled distribution	Y	Y	Y	Ν	Ν	Ν	Ν	Ν
21. Date marking	Y	Y	Y	Ν	Y	Y	Y	Y
FOOD HYGIENE TRAINING								
22. Received	Y	Ν	Y	Y	Y	Ν	Ν	Ν