
332Rust Pathogens

November 2017 and continued with an increasing 
trend until early April 2018 before starting to 
decrease again (Fig. 1B). In Northland, after the 
four positive sites were detected and treated by 
the Ministry for Primary Industries (MPI) in 
May 2017, no further detections were made there 
until April 2018. 

The MPI operates a surveillance database and 
host records show nine Myrtaceae genera for 
which more than 1,000 plants have been surveyed. 
Of these, the prevalence of A. psidii is currently: 
8.64% on Lophomyrtus spp. (ramarama); 1.76% 
on Syzygium spp. (monkey apple); and 1.02% on 
Metrosideros spp. (pōhutukawa, northern rata 
and southern rata). The other six species recorded 
with infection, which included Leptospermum 
scoparium (mānuka), each had prevalence 
<0.30%. It appears from this information, as well 
as and from observations in Australia (G. Pegg 
pers. comm.) that, of the common Myrtaceae 
species present in New Zealand, ramarama, 
monkey apple and pōhutukawa/rata are 
particularly susceptible to A. psidii.

Surveillance coordinated by MPI aimed to 
quantify the spread of A. psidii to help interpret 

risk factors, plan containment and, from April 
2018, plan long-term management. To do this 
effectively, information was required about 
the suitability of the climate in New Zealand 
for A. psidii development. Climatic factors are 
recognised as crucial in determining the rate 
of spread, geographic range and impact of A. 
psidii (Ruiz et al. 1989, Glen et al. 2007, Booth 
& Jovanovic 2012, Alvares et al. 2017). In June 
2017, The New Zealand Institute for Plant and 
Food Research Limited (PFR) and the National 
Institute for Water and Atmospheric Research 
Limited (NIWA) began development of a 
weather-based risk-prediction model to monitor 
regional and seasonal suitability of weather for 
A. psidii to assist targeted surveillance efforts 
by MPI. This paper describes the development 
and implementation of the Myrtle Rust Process 
Model (MRPM) in New Zealand and evaluates 
its performance in relation to previous myrtle 
rust models and surveillance data collected 
during the first year since A. psidii arrived in New 
Zealand. 

Figure 1 Mainland New Zealand regions where myrtle rust (Austropuccinia psidii) was detected between 
May 2017 and May 2018 (A), and the daily rate and total number of confirmed positive detections for 
new and re-infected sites in those regions (B). Data are from publicly available information (Ministry for 
Primary Industries and Department of Conservation, https://nzppi.co.nz/documents/pests/Myrtle%20
Rust%20Stakeholder%20Update.pdf).

Predicting the climatic risk of myrtle rust during its 
�rst year in New Zealand 

Robert M. Beresford1,*, Richard Turner2, Andrew Tait2, Vijay Paul2, Gregor Macara2, 
Zhidong D. Yu3, Lorin Lima3 and Rebecca Martin3

1�e New Zealand Institute for Plant & Food Research Ltd, Private Bag 92-169, Auckland, 
New Zealand.
2National Institute of Water and Atmospheric Research, Ltd, Private Bag 14901, Wellington, 
New Zealand
3Ministry for Primary Industries, PO Box 2526, Wellington 6140, New Zealand 
*Corresponding author: robert.beresford@plantandfood.co.nz

Abstract After the first detection of myrtle rust (Austropuccinia psidii) on mainland New 
Zealand in May 2017, the Ministry for Primary Industries sought information about how 
weather conditions would affect regional and seasonal risk of disease establishment to help 
plan the incursion response. Using internationally published information, a pathogen-
process model was developed to predict infection, latent period and sporulation in relation 
to weather variables (temperature, relative humidity and solar radiation). This Myrtle 
Rust Process Model (MRPM) was implemented by the National Institute of Water and 
Atmospheric Research Limited using numerical weather model data to produce weekly 
maps of potential risk. Predicted risk was greatest in northern North Island and decreased 
further south, but was still substantial in coastal areas of the north-western South Island 
during summer and autumn. Risk was low in southern coastal areas of the South Island 
and the lowest risk occurred in mountainous areas, particularly in the South Island. 
Retrospective analysis of surveillance data showed that the MRPM accurately predicted 
geographic risk and it is currently in use for tactical planning of incursion surveillance and 
organism management.

Key words Guava rust, eucalypt rust, disease detection, incursion response, biosecurity, 
climatology, numerical weather forecasting, Climex model, MaxEnt model, ensemble 
model, Unified Model

New Zealand Plant Protection 71: 332-347 (2018)   https://doi.org/10.30843/nzpp.2018.71.176

INTRODUCTION
Myrtle rust (Austropuccinia psidii) was first 
confirmed on mainland New Zealand in 
Northland on 3 May 2017 (Guy & Barry 2017), 
although it had previously been confirmed on 
Raoul Island in the Kermadec Group on 4 April 
2017 (MPI 2017). At the time of writing (16 May 
2018), mainland detections had been made in the 
North Island, as far south as Wellington, and in 
the Tasman region of the South Island (Fig. 1A). 
The number of confirmed positive sites, including 
re-infected sites, is currently 732. Dates of first 

detection in each region and the total number 
of infected sites to date, including re-infections, 
are: Northland 3 May 2017 (32); Taranaki 17 
May 2017 (291); Waikato 21 May 2017 (81); 
Bay of Plenty 12 June 2017 (162); Auckland 21 
November 2017 (102); Wellington 28 November 
2017 (37); Manawatu 19 March 2018 (21); 
Tasman 4 April 2018 (3); Gisborne 13 April 
2018 (2); and Coromandel 20 April 2018 (1). The 
detection rate has varied over time and decreased 
during winter, to a minimum during September 
2017, after which it increased markedly from late 
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and implementation of the Myrtle Rust Process 
Model (MRPM) in New Zealand and evaluates 
its performance in relation to previous myrtle 
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are required for infection. The Brazilian model 
was, therefore, modified to produce a more 
biologically plausible moisture response by 
using the Gompertz growth function (Table 1 
and Fig. 2B), which had been previously used 
by Beresford (1986) to model infection of barley 
leaves by urediniospores of Puccinia hordei. The 
modified model defined the moisture period as 
hours of high RH (≥85%), rather than hours of 
surface wetness (Sentelhas et al. 2008), to allow 
implementation of the model using data sources 
that lack surface wetness as a parameter, which 
include standard climate stations and numerical 
weather models.

Spore germination of A. psidii is reported to 
be favoured by low light intensity (Glen et al. 
2007), which may be an adaptation ensuring that 
spores germinate at night when long wet periods 
occur. Hourly solar radiation (SR; units W/m2) 
was used in a linear function, the light inhibition 
index (L), to predict declining infection risk with 
increasing light intensity, as follows:
L = −0.0008SR +1

The value of L is 1 at 0 W/m2 and 0 when 
solar radiation is ≥1250 W/m2. The infection 
risk index is calculated daily as the product of Y 
(Gompertz function using number of hours with 
≥85% RH and mean temperature during high RH 
hours) and the daily mean of the hourly L index 
values. Calculation of the infection risk index is 
undertaken daily starting with the hour ending 

Table 1 The response of infection risk (Y) to duration of high relative humidity (RH) and temperature 
(T) used in the infection sub-model. The four-parameter Gompertz function with asymptote (C), point 
of inflection (M), rate (B) and hours of RH >85% (X), defines the response to moisture and cubic 
polynomials, with coefficients P1 to P4, define the response of parameters M and C to temperature. Y 
varies from 0 to 1.

Gompertz function, Y = C * EXP[-EXP{ - B(X - M)}] 
Cubic polynomial for temperature
[C or M] = P1T

3 + P2T
2 + P3T + P4

Gompertz parameter P1 P2 P3 P4

C Asymptote -0.000095 0.0012 0.0635 0.0047
M Point of inflection 0.0011 0.0917 -5.3193 66.288
B Rate 0.39 for all temperatures

Figure 2 Comparison between the Brazilian 
model (Ruiz et al. 1989) (A) and the modified 
model used in the infection sub-model 
(B), showing predicted infection risk of 
Austropuccinia psidii in response to duration of 
moisture (leaf wetness or RH ≥ 85%) and mean 
temperature during the moist period.

METHODS
Modelling rationale
The effect of climate on the invasive range of 
A. psidii has previously been studied using 
bioclimatic modelling platforms. Those that 
include specific predictions for New Zealand are: 
Magarey et al. (2007) using NAPPFAST; Hanna 
et al. (2012) using MaxEnt; Kriticos et al. (2013) 
using Climex; and Narouei-Khandan (2014) 
using ensembles of bioclimatic models. Alvares 
et al. (2017), on the other hand, used a pathogen 
process model developed by Ruiz et al. (1989) in 
Brazil. 

Bioclimatic models predict potential areas 
where a species could spread to, based on the 
climate in areas where it currently occurs. 
However, these models may under-estimate 
geographic range when predicting for new areas 
(i.e. generate false negative predictions). This 
can occur if an area used to calibrate the model 
is climatically suitable for the pathogen, but 
because of a lack of pathogen records is assumed 
to be climatically unsuitable. A lack of pathogen 
records can arise through lack of searching, 
because something has prevented pathogen 
arrival (natural barrier) or no susceptible hosts 
are present. Furthermore, in relation to airborne 
plant pathogens, current bioclimatic modelling 
platforms do not represent the requirement for 
periods of high relative humidity (RH) to allow 
infection (Magarey et al. 2005). Soil moisture, 
which is often used instead, may be inappropriate 
and all these models use time-averaged values 
of meteorological variables (usually monthly), 
which do not capture important information 
about diurnal cycling of infection processes. The 
relatively coarse time resolution of climate data 
available in bioclimatic model platforms, and the 
inability to make near-real time updates, made 
them unsuitable for the tactical surveillance 
planning requirement of this study.

Pathogen process models may suffer from 
representational error if they are developed 
from controlled environment data that do not 
relate to field situations. However, providing that 
the modelled processes are epidemiologically 
relevant, a process model can be calibrated to 

give unbiased predictions of climatic suitability 
by comparing the output with actual field 
disease data and adjusting the model parameters 
appropriately. Pathogen-process models can 
operate at fine time resolution, e.g. hourly, and so 
they can capture diurnal cycling of temperature 
and RH. A process model was, therefore, chosen 
for the MRPM. However, A. psidii could not 
be studied experimentally in New Zealand 
to provide data relevant to local conditions 
because it is currently a controlled organism. 
Consequently, the model was developed from 
published international information. 

The MRPM predicts daily risk values for 
three epidemiological processes: (1) infection; 
(2) latent period; and (3) spore production, 
which are represented by three respective risk 
indices. The model does not consider pathogen 
inoculum, as no near-real time data are available 
on this, so it identifies potential risk based only 
on climatic factors. The MRPM also does not use 
host susceptibility as an input, but rather assumes 
that the most susceptible myrtaceous hosts, 
including species of Lophomyrtus, Syzygium and 
Metrosideros will be those that dictate patterns 
of spread and severity in New Zealand. As with 
the bioclimatic models, the MRPM does not 
currently consider changes in susceptibility of 
host tissues with age. 

Infection sub-model
The A. psidii infection model developed by Ruiz 
et al. (1989) used controlled environment data to 
model infection of urediniospores in relation to 
wetness duration and temperature. They fitted a 
double quadratic function, which predicted an 
infection index (Ii) as follows:
Ii = -32.2626 + (3.6999T) + (0.4613LWD) − 
(0.0018T*LWD) − (0.0903T2) − (0.0068LWD2)

where T = temperature during the wet period 
in °C and LWD = leaf wetness duration in hours 
(Fig. 2A). However, this model anomalously 
predicts substantial infection with zero hours 
of wetness at temperatures around the optimum 
of 20°C. This differs markedly from other 
reports on A. psidii (e.g. Glenn et al. 2007) that 
indicate a minimum of 6 to 8 hours of moisture 
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reports on A. psidii (e.g. Glenn et al. 2007) that 
indicate a minimum of 6 to 8 hours of moisture 



336Rust Pathogens

Table 3 Parameters for the latent period sub-model, which calculates hourly latent development rate 
(1/LP) as a function of temperature (T). The step (h) is in hours, A is the slope of the low-temperature 
response, Tmin and Tmax are the lowest and highest temperatures for latent development and R is a rate 
parameter governing the shape of the curve.

Latent development rate (1/LP)  = h x A x ([T-Tmin] x [1-e{R*(T-Tmax)}]
h A Tmin Tmax R
1 0.0003 1 30 0.1

Figure 3 Response of rust latent periods to mean air temperature during the latent period for five 
Puccinia species on various host, modelled using the equation in Table 3, and the estimated response for 
Austropuccinia psidii used in the latent period sub-model. The horizontal line at 12 days is the assumed 
minimum latent period for A. psidii. 

reduced spore production below 10°C and above 
25°C. Spore availability in the field will also 
be greater when the latent period is shorter, as 
uredinia will be appearing more rapidly. The 
sporulation sub-model (Fig. 4) was, therefore, 
the product of a sporulation index (Table 4), 
reflecting the hypothesised temperature response 
and the latent development rate (1/LP) (Table 3). 
Sporulation risk is calculated hourly and totalled 
daily.

Myrtle rust model implementation
The MRPM was used by NIWA to predict spatial 
patterns of risk using a virtual weather grid 
produced by the New Zealand Convective Scale 
Model (NZCSM). Daily values of the risk indices 
from the infection, sporulation and latent period 
sub-models were summarised as average daily 
risk, or latent period, over the previous seven 
days and presented as colour-coded risk maps. 
These weekly maps were provided as a weekly 

at 3 pm New Zealand Standard Time (NZST) 
when the daily probability of high RH is lowest. 
A local implementation of the Brazilian model 
was used with weather data from five calibration 
sites (Table 2) to adjust the RH threshold for the 
MRPM infection sub-model. Values between 
75% and 95% RH were tested and a value of 
85% RH gave the best agreement in seasonal 
patterns of predicted risk with the Brazilian 
model (Additional File https://doi.org/10.30843/
nzpp.2018.71.176.91).

Latent period sub-model
For disease surveillance, knowledge of the 
time delay between infection and appearance 
of disease is crucial for interpreting possible 
infection sources and planning inspections to 
detect secondary spread. Time from infection 
to first identifiable symptoms is the incubation 
period, whereas time to production of uredinia 
(new inoculum) is the latent period. The latter 
is important for surveillance because observed 
symptoms can readily be confirmed as myrtle 
rust once uredinia have appeared. The latent 
period for A. psidii is reported to be about 12 
days (Ruiz et al. 1989, Glen et al. 2007), although 
Alfenas et al. (1989) and Pegg et al. (2014) 
reported uredinia on extremely susceptible 
hosts 5–7 days after infection. Incubation and 
latent periods are dependent on temperature, 
as indicated by Carnegie et al. (2010), where 

symptom development on susceptible species was 
delayed during cooler months by 4 to 5 weeks. 
The response of latent period to temperature has 
been well characterised for many rusts, but no 
definitive study has been carried out for A. psidii.

A model for the response of latent period 
to temperature for A. psidii was derived from 
published latent period information for five 
other rust species (Fig. 3), using a modification 
of the function that Hernandez Nopsa and 
Pfender (2014) used to model the rate of latent 
development for wheat stem rust (Puccinia 
graminis f. sp. tritici). The latent period sub-
model (Table 3) assumed that the minimum 
A. psidii latent period was 12 days, although 
the parameters can be easily changed if new 
information suggests that a shorter value would 
be more appropriate.

Sporulation sub-model
Disease surveillance and dispersal modelling 
of pathogen spread both require knowledge of 
where and when spores are likely to be produced. 
Temperature is a major determinant of spore 
production in rust fungi (Teng & Close 1978) 
and was used to drive the A. psidii sporulation 
risk model. It was assumed that the temperature 
response of spore production on host plants in 
New Zealand would be similar to that for other 
aspects of the A. psidii infection cycle, with 
an optimum around 20°C, and substantially 

Table 2 Weather station locations for five calibration sites used to examine myrtle rust risk indices using 
27 months of weather data (January 2016 to April 2018). 

Land area Region Weather station 
location

Latitude (°S), 
longitude (°E)

Elevation (m)

North Island Northland 1Kerikeri 35.18, 173.93 20

Auckland 1Owairaka 36.89, 174.73 40

Bay of Plenty 1Te Puke 37.82, 176.32 72

Taranaki 
2New Plymouth 
aerodrome 39.01, 174.18 30

South Island Tasman 1Riwaka 41.10, 172.97 15
1Operated by The New Zealand Institute for Plant and Food Research Limited (PFR) and the National 
Institute of Water and Atmospheric Research Limited (NIWA)
2Operated by the Meteorological Service of New Zealand Limited
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Table 3 Parameters for the latent period sub-model, which calculates hourly latent development rate 
(1/LP) as a function of temperature (T). The step (h) is in hours, A is the slope of the low-temperature 
response, Tmin and Tmax are the lowest and highest temperatures for latent development and R is a rate 
parameter governing the shape of the curve.

Latent development rate (1/LP)  = h x A x ([T-Tmin] x [1-e{R*(T-Tmax)}]
h A Tmin Tmax R
1 0.0003 1 30 0.1

Figure 3 Response of rust latent periods to mean air temperature during the latent period for five 
Puccinia species on various host, modelled using the equation in Table 3, and the estimated response for 
Austropuccinia psidii used in the latent period sub-model. The horizontal line at 12 days is the assumed 
minimum latent period for A. psidii. 

reduced spore production below 10°C and above 
25°C. Spore availability in the field will also 
be greater when the latent period is shorter, as 
uredinia will be appearing more rapidly. The 
sporulation sub-model (Fig. 4) was, therefore, 
the product of a sporulation index (Table 4), 
reflecting the hypothesised temperature response 
and the latent development rate (1/LP) (Table 3). 
Sporulation risk is calculated hourly and totalled 
daily.

Myrtle rust model implementation
The MRPM was used by NIWA to predict spatial 
patterns of risk using a virtual weather grid 
produced by the New Zealand Convective Scale 
Model (NZCSM). Daily values of the risk indices 
from the infection, sporulation and latent period 
sub-models were summarised as average daily 
risk, or latent period, over the previous seven 
days and presented as colour-coded risk maps. 
These weekly maps were provided as a weekly 

at 3 pm New Zealand Standard Time (NZST) 
when the daily probability of high RH is lowest. 
A local implementation of the Brazilian model 
was used with weather data from five calibration 
sites (Table 2) to adjust the RH threshold for the 
MRPM infection sub-model. Values between 
75% and 95% RH were tested and a value of 
85% RH gave the best agreement in seasonal 
patterns of predicted risk with the Brazilian 
model (Additional File https://doi.org/10.30843/
nzpp.2018.71.176.91).

Latent period sub-model
For disease surveillance, knowledge of the 
time delay between infection and appearance 
of disease is crucial for interpreting possible 
infection sources and planning inspections to 
detect secondary spread. Time from infection 
to first identifiable symptoms is the incubation 
period, whereas time to production of uredinia 
(new inoculum) is the latent period. The latter 
is important for surveillance because observed 
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Alfenas et al. (1989) and Pegg et al. (2014) 
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symptom development on susceptible species was 
delayed during cooler months by 4 to 5 weeks. 
The response of latent period to temperature has 
been well characterised for many rusts, but no 
definitive study has been carried out for A. psidii.

A model for the response of latent period 
to temperature for A. psidii was derived from 
published latent period information for five 
other rust species (Fig. 3), using a modification 
of the function that Hernandez Nopsa and 
Pfender (2014) used to model the rate of latent 
development for wheat stem rust (Puccinia 
graminis f. sp. tritici). The latent period sub-
model (Table 3) assumed that the minimum 
A. psidii latent period was 12 days, although 
the parameters can be easily changed if new 
information suggests that a shorter value would 
be more appropriate.

Sporulation sub-model
Disease surveillance and dispersal modelling 
of pathogen spread both require knowledge of 
where and when spores are likely to be produced. 
Temperature is a major determinant of spore 
production in rust fungi (Teng & Close 1978) 
and was used to drive the A. psidii sporulation 
risk model. It was assumed that the temperature 
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Table 2 Weather station locations for five calibration sites used to examine myrtle rust risk indices using 
27 months of weather data (January 2016 to April 2018). 

Land area Region Weather station 
location

Latitude (°S), 
longitude (°E)

Elevation (m)

North Island Northland 1Kerikeri 35.18, 173.93 20

Auckland 1Owairaka 36.89, 174.73 40

Bay of Plenty 1Te Puke 37.82, 176.32 72

Taranaki 
2New Plymouth 
aerodrome 39.01, 174.18 30

South Island Tasman 1Riwaka 41.10, 172.97 15
1Operated by The New Zealand Institute for Plant and Food Research Limited (PFR) and the National 
Institute of Water and Atmospheric Research Limited (NIWA)
2Operated by the Meteorological Service of New Zealand Limited
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RESULTS
NZCSM weather model validation
Correlations between NZCSM-based and 
weather station-based weekly values of the three 
risk indices for 5 selected weeks over 100 climate 
stations (Table 5) and for 4 selected stations over 
31 months (Table 6) were high. For individual 
sites and weeks, the biases were generally within 

10% for sporulation risk and within 15% for 
latent period, except for Winchmore, where 
latent period was biased low by 30%. This was 
partly caused by a few very long latent periods 
(>100 days) in the climate station values being 
represented by latent periods of ~50 days in the 
NZCSM-based values. The high relative bias 
for infection risk at Winchmore is a reflection 

Table 6 Correlation coefficients between NZCSM-based values of infection risk, latent period, and 
sporulation risk and climate station-based values at Kerikeri, Te Puke, Riwaka and Winchmore for the 
period 9 May 2015 to 4 November 2017. Average biases are in square brackets. Note, the period from 9 
July to 23 September 2016 was unavailable for comparison.

Site Infection risk Latent Period Sporulation
Kerikeri 0.856 [0.71] 0.967 [0.83] 0.968 [1.04]
Te Puke 0.903 [0.70] 0.957 [0.93] 0.975 [0.92]
Riwaka 0.873[0.97] 0.912 [0.84] 0.963 [1.08]
Winchmore 0.775[1.92] 0.882 [0.70] 0.967 [1.16]

Table 5 Average bias and correlation coefficients between NZCSM-based values and climate station-
based values for infection risk, latent period, and sporulation risk for 100 selected climate stations for 
two high-risk weeks in March 2017 and three low-risk weeks in August 2017.

Week End Climate Station-Based Avg NZCSM-Based Avg Bias Correl.
Infection Risk (0–1)

11 Mar 2017 0.267 0.365 1.37 0.882
25 Mar 2017 0.232 0.360 1.55 0.814
05 Aug 2017 0.014 0.019 1.36 0.622
12 Aug 2017 0.099 0.109 1.10 0.863
19 Aug 2017 0.034 0.037 1.09 0.783

Latent Period (days)
11 Mar 2017 16.4 13.7 0.84 0.959
25 Mar 2017 14.9 12.4 0.83 0.874
05 Aug 2017 48.6 43.2 0.89 0.853
12 Aug 2017 25.2 25.8 1.03 0.849
19 Aug 2017 31.6 32.8 1.04 0.876

Sporulation Risk (0–1)
11 Mar 2017 0.735 0.741 1.01 0.962
25 Mar 2017 0.721 0.738 1.02 0.949
05 Aug 2017 0.247 0.239 0.97 0.861
12 Aug 2017 0.473 0.443 0.94 0.946
19 Aug 2017 0.405 0.380 0.94 0.827

Table 4 Parameter values for the Cubic 
polynomial function used for the sporulation 
index (S), which describes the relative suitability 
of temperature (T) for spore production by 
Austropuccinia psidii.

S = P1T
3 + P2T

2 + P3T + P4

P1 P2 P3 P4

-0.000095 0.0012 0.0635 0.004655

Figure 4 Temperature response for Austropuccinia 
psidii sporulation risk, which is the product of 
two functions: the sporulation index and the 
latent development rate, 1/LP, where LP is the 
latent period.

operational service to MPI.
The NZCSM is a New Zealand area 

configuration of the UK Meteorological 
Office Unified Model (MetUM). It features a 
non-hydrostatic dynamical core, called New 
Dynamics (Davies et al. 2005), semi-implicit 
time-stepping and semi-Lagrangian advection 
and terrain-following vertical levels. The 
underlying orography is created at the model 
resolution of 1.5 km from the GLOBE source 
dataset with a horizontal resolution of 1 km 
(GLOBE Task Team, 1999). Other important 
configuration settings for NZCSM are provided 
in the Appendix. For the period after January 
2016 we used short-range 3 pm to 3 pm NZST 
NZCSM forecasts of temperature, humidity and 
solar radiation as inputs into the appropriate 
MRPM formulae. These were then interpolated 
(binomial) onto a regular 1-km NZTM grid 
and averaged over 7 days to get weekly (Sunday 
through Saturday) values. Because of operational 
reasons, the initial times of the NZCSM forecasts 
were 2100 UTC (0900 NZST) prior to and 
including June 27 2017, and 0000 UTC (1200 
NZST) from June 28, 2017.

The gridded NZCSM-based risk predictions 
were checked for bias against risk predictions 
from 100 NIWA climate stations around New 

Zealand for selected weeks in March and August 
2017. In calculating the correlations, those 
station-based records that had missing values 
for any day of a particular week were removed 
and station-based latent periods >300 days 
were truncated to 300 days. Time series of the 
weekly NZCSM-based grid point values nearest 
to climate stations were also validated over the 
period May 2015 to September 2017. 

Myrtle rust model validation 
Geographic and seasonal patterns of average 
monthly predicted risk calculated daily at the five 
calibration sites were examined over 27 months, 
from January 2016 to April 2018. The last 12 
months were after A. psidii had been detected 
on mainland New Zealand. For each site, hourly 
values of air temperature, RH and solar radiation 
were used to run the model. New Zealand 
surveillance data from MPI and the Department 
of Conservation (DOC) were used to compare 
the risk predictions from each MRPM sub-model 
with A. psidii detection data on a regional basis. 
However, because A. psidii has been present in 
New Zealand for only a short time the currently 
observed distribution is likely to be influenced 
by dispersal processes and surveillance intensity, 
as well as by climate. Additional evaluation of 
the model’s predictions for New Zealand was, 
therefore, made by comparing the MRPM risk 
maps with those from other studies that had 
mapped risk for New Zealand (Magarey et al. 
2007; Hanna et al. 2012; Kriticos et al. 2013; 
Narouei-Khandan 2014). 
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RESULTS
NZCSM weather model validation
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latent period, except for Winchmore, where 
latent period was biased low by 30%. This was 
partly caused by a few very long latent periods 
(>100 days) in the climate station values being 
represented by latent periods of ~50 days in the 
NZCSM-based values. The high relative bias 
for infection risk at Winchmore is a reflection 
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Figure 4 Temperature response for Austropuccinia 
psidii sporulation risk, which is the product of 
two functions: the sporulation index and the 
latent development rate, 1/LP, where LP is the 
latent period.

operational service to MPI.
The NZCSM is a New Zealand area 

configuration of the UK Meteorological 
Office Unified Model (MetUM). It features a 
non-hydrostatic dynamical core, called New 
Dynamics (Davies et al. 2005), semi-implicit 
time-stepping and semi-Lagrangian advection 
and terrain-following vertical levels. The 
underlying orography is created at the model 
resolution of 1.5 km from the GLOBE source 
dataset with a horizontal resolution of 1 km 
(GLOBE Task Team, 1999). Other important 
configuration settings for NZCSM are provided 
in the Appendix. For the period after January 
2016 we used short-range 3 pm to 3 pm NZST 
NZCSM forecasts of temperature, humidity and 
solar radiation as inputs into the appropriate 
MRPM formulae. These were then interpolated 
(binomial) onto a regular 1-km NZTM grid 
and averaged over 7 days to get weekly (Sunday 
through Saturday) values. Because of operational 
reasons, the initial times of the NZCSM forecasts 
were 2100 UTC (0900 NZST) prior to and 
including June 27 2017, and 0000 UTC (1200 
NZST) from June 28, 2017.

The gridded NZCSM-based risk predictions 
were checked for bias against risk predictions 
from 100 NIWA climate stations around New 

Zealand for selected weeks in March and August 
2017. In calculating the correlations, those 
station-based records that had missing values 
for any day of a particular week were removed 
and station-based latent periods >300 days 
were truncated to 300 days. Time series of the 
weekly NZCSM-based grid point values nearest 
to climate stations were also validated over the 
period May 2015 to September 2017. 

Myrtle rust model validation 
Geographic and seasonal patterns of average 
monthly predicted risk calculated daily at the five 
calibration sites were examined over 27 months, 
from January 2016 to April 2018. The last 12 
months were after A. psidii had been detected 
on mainland New Zealand. For each site, hourly 
values of air temperature, RH and solar radiation 
were used to run the model. New Zealand 
surveillance data from MPI and the Department 
of Conservation (DOC) were used to compare 
the risk predictions from each MRPM sub-model 
with A. psidii detection data on a regional basis. 
However, because A. psidii has been present in 
New Zealand for only a short time the currently 
observed distribution is likely to be influenced 
by dispersal processes and surveillance intensity, 
as well as by climate. Additional evaluation of 
the model’s predictions for New Zealand was, 
therefore, made by comparing the MRPM risk 
maps with those from other studies that had 
mapped risk for New Zealand (Magarey et al. 
2007; Hanna et al. 2012; Kriticos et al. 2013; 
Narouei-Khandan 2014). 
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Seasonal patterns of predicted risk
Seasonal trends in predicted latent period and 
sporulation risk at the five calibration sites (Fig. 8) 
showed peaks between summer and early autumn 
(January to March). Shorter latent period (higher 
risk) occurred at the more northern sites and at 
all five sites, the shortest latent period in summer 
was close to the predicted 12-day minimum. For 
the North Island sites, latent period was almost 
always less than 20 days (high to very high risk), 

but at Riwaka in the South Island, in winter, it was 
greatly extended because temperatures were in 
the cool part of the temperature response curve 
(below 10°C, Fig. 3), where a small decrease in 
temperature greatly increases latent period. 
Predicted sporulation risk was high to very high 
(>0.6) for 9–10 months of each year at all the 
North Island calibration sites and was >0.6 for 
about 8 months of each year at Riwaka.

For infection risk, which is heavily influenced 
by high RH duration, seasonal risk patterns 
were variable. Highest infection risk consistently 
occurred further north, although relatively 
high mean monthly values could occur during 
summer and early autumn at Riwaka (Fig. 8). 
In January 2018, mean monthly infection risk 
was exceptionally high at all five calibration 
sites, including Riwaka, which was associated 
with moist northerly air flows and record-high 
sea temperatures around New Zealand during 
summer 2017–18. Infection risk tended to 
peak between early summer and early autumn 
(December to March). It decreased during 
autumn and remained relatively low from winter 
to early spring (April to October), although 
periods of higher risk could occur during this 
period. Risk increased again during late spring 
and early summer.

Figure 6 Example weekly Austropuccinia psidii infection risk maps, featuring high risk in the north-
west South Island (19 to 25 March 2017), uniformly low risk across all the mainland (2 to 8 July 2017), 
extensive high risk in the western South Island (21 to 27 January 2018) and very high risk in the upper 
North Island and eastern Bay of Plenty (11 to 17 February 2018). 

Figure 7 Average and maximum predicted 
infection risk for Austropuccinia psidii between 
May 2015 and March 2018, using virtual weather 
data generated by the New Zealand Convective 
Scale Model (NZCSM). 

Figure 5 Example of a weekly map generated by the New Zealand Convective Scale Model (NZCSM) 
for 29 October to 4 November 2017 showing Austropuccinia psidii risk predicted by the infection, 
sporulation and latent period sub-models. 

of the low average risk rather than a large 
absolute risk (0.046 compared with 0.024). For 
the spatial correlations (Table 6), the individual 
biases ranged from +10% to +55%, but the 
correlations were excellent, so the relative risks 
were consistent.

Myrtle rust model implementation
The MRPM algorithm was completed within 
3 months of the first detection of A. psidii on 
mainland New Zealand and the model became 
operational with provision of weekly risk maps to 
MPI (Fig. 5) within 4 months (from September 
2017). Of the three output risk variables, 
infection risk showed substantial spatial and 
temporal variation associated with variability in 
high RH duration (Fig. 5 and Fig. 6). This index 
was found to be the most useful for surveillance 
planning. Latent period risk and sporulation risk, 
which varied according to regional and seasonal 
temperatures, were relatively high in most 
months in coastal areas of the North Island and 
northern South Island. 

Geographic patterns of predicted risk
Geographic patterns of average infection risk 
were examined using the mean weekly risk 
obtained for each point on the NZCSM weather 
grid from May 2015 to March 2018. The averaged 
values of infection risk were low (Fig. 7), 
however, in relative terms, the greatest infection 
risk occurred in the northern half of the North 
Island (excluding the Auckland isthmus) and in 
small areas of north-west Tasman. Intermediate 
risk occurred on the Auckland isthmus, in 
North Island areas south of a line between Cape 
Egmont and East Cape and in coastal parts of 
the Marlborough Sounds, Tasman and northern 
West Coast. Lowest risk occurred in the eastern 
and southern parts of the South Island and at 
higher elevation. Mapped values of maximum 
weekly infection risk (Fig. 7), which showed the 
worst-case infection risk for New Zealand as a 
whole, showed that high or very high risk could 
occur in most coastal areas. This depiction may 
exaggerate risk further south where high or very 
high risk occurs infrequently.
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biases ranged from +10% to +55%, but the 
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The MRPM algorithm was completed within 
3 months of the first detection of A. psidii on 
mainland New Zealand and the model became 
operational with provision of weekly risk maps to 
MPI (Fig. 5) within 4 months (from September 
2017). Of the three output risk variables, 
infection risk showed substantial spatial and 
temporal variation associated with variability in 
high RH duration (Fig. 5 and Fig. 6). This index 
was found to be the most useful for surveillance 
planning. Latent period risk and sporulation risk, 
which varied according to regional and seasonal 
temperatures, were relatively high in most 
months in coastal areas of the North Island and 
northern South Island. 

Geographic patterns of predicted risk
Geographic patterns of average infection risk 
were examined using the mean weekly risk 
obtained for each point on the NZCSM weather 
grid from May 2015 to March 2018. The averaged 
values of infection risk were low (Fig. 7), 
however, in relative terms, the greatest infection 
risk occurred in the northern half of the North 
Island (excluding the Auckland isthmus) and in 
small areas of north-west Tasman. Intermediate 
risk occurred on the Auckland isthmus, in 
North Island areas south of a line between Cape 
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exaggerate risk further south where high or very 
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Bay of Plenty, southern Taranaki, and the coastal 
areas of Manawatu–Wanganui, Kapiti Coast–
Wellington, Gisborne, Hawke’s Bay, Wairarapa, 
the rest of Tasman, northern West Coast, Nelson 
and coastal Marlborough. Eastern South Island 
areas south of Marlborough have relatively low 
risk, as does coastal Southland. The lowest risk 
occurs in mountainous areas, particularly in the 
South Island. These inferences are based on the 
spatial trends in average and maximum values of 
the MRPM infection risk index generated by the 
NZCSM between 2015 and 2018. The accuracy 
of these predictions has so far been supported by 
the detection of A. psidii in Northland, Auckland, 
Coromandel, Bay of Plenty, north Gisborne, 
Waikato, Taranaki, Manawatu, Wellington and 
Tasman. The prediction by the NZCSM of a 
pocket of particularly high risk in north-west 
Tasman is concordant with the first South Island 
detection of A. psidii in that area. In Northland, 
the lack of new detections from May 2017 to 
April 2018, despite the high predicted infection 
risk for that region, appears to have been because 
MPI’s early management intervention prevented 
re-infection for about 11 months. It seems likely 
with this pathogen that re-infection from outside 
sources (such as Australia) is always likely to 
occur, even if localised eradication is possible.

Predicted latent period risk and sporulation 
risk were generally high throughout New 
Zealand, except in the far south and at high 
elevation, indicating that the temperature range 
over most of the country is quite favourable for 
these processes. Although the yearly maximum 
mean temperatures at the more northern sites 
(about 23°C) slightly exceeded the predicted 
optimum for A. psidii (20°C), there was only a 
slight indication in Northland that high summer 
temperatures reduced the risk index values. 
However, the possibility of high temperature 
limitation of myrtle rust risk must be kept in 
mind in relation to future climate warming.

The ability of the MRPM to produce fine time 
resolution risk predictions (daily or weekly) has 
identified that short-term weather variability is 
important in defining patterns of climatic risk. 
While this was useful for planning the incursion 

response, it also indicated that marginal areas, 
like northwest Tasman, can have occasional 
days with high risk between summer and early 
autumn that may promote local establishment of 
A. psidii in an otherwise unsuitable area. These 
areas would not be revealed by the mapped 
output available in current bioclimatic risk 
models, which typically use monthly averages of 
climatic variables. 

MRPM compared with bioclimatic models
The MRPM agreed with the Climex model 
(Kriticos et al. 2013) that the northern North 
Island is high risk, but predicted a wider invasive 
range, that included the Tasman and northern 
West Coast regions in the South Island. The 
MRPM differed substantially from both the 
MaxEnt (Hanna et al. 2012) and the NAPPFAST 
(Magarey et al. 2007) models, both of which 
predicted low or no risk for most of New Zealand. 
On a global scale, MaxEnt predicted that high 
risk was restricted to a relatively narrow band of 
latitude in the tropics and NAPPFAST predicted 
large areas of high risk throughout the tropics 
and subtropics, but with a sharp cut-off at higher 
southern latitudes that excluded most of New 
Zealand and much of south-eastern Australia. 
Pathogen presence data from New Zealand (this 
article) and from southern New South Wales, 
Victoria and Tasmania (PBCRC 2018) show 
that both these models have underestimated 
establishment risk in these more southern areas.

Stewart et al. (2017) repeated the MaxEnt 
analyses of Hanna et al. (2012) using data on A. 
psidii presence in different regions. They grouped 
geographically referenced isolates according 
to genetic markers (multilocus genotypes) and 
subjected each group to a separate bioclimatic 
analysis. The geographic risk predicted for the 
‘Pandemic’ strain (C1/C4 grouping), which is the 
one identified as present in Australia and New 
Zealand, was low for all of New Zealand. The 
highest risk, which was predicted for Northland 
and Auckland, had a MaxEnt probability 
of occurrence ≤10% and the risk predicted 
elsewhere was negligible. This analysis, therefore, 
failed to predict at least seven out of the 10 New 

Myrtle rust model validation
Comparing spatial patterns of predicted climatic 
infection risk with disease detections for a 
pathogen that is actively spreading, requires 
caution. True positives (disease predicted 
and observed) would indicate good accuracy 
and false negatives (disease not predicted 
and observed) would indicate poor accuracy. 
However, true negatives (disease not predicted 
and not observed) and false positives (disease 
predicted and not observed) would not be 
informative because they could arise for non-
climatic reasons, including lack of pathogen or 
host presence or limited surveillance.

Our interpretation of the spatial and temporal 
infection risk distribution (Figs. 7 and 8) makes 
all 10 regions where A. psidii was detected 
between May 2017 and April 2018 (Fig. 1A) true 
positives. Good accuracy was also indicated for 
areas predicted to have low climatic suitability 
by the absence of pathogen detections (no false 
negatives). Disease was not detected in some 
areas predicted to have occasional high risk, e.g. 
Hawke’s Bay, Wairarapa and the West Coast, but 
the pathogen could have been absent from these 
areas because it had not yet arrived, or there 
were no hosts, or there was no surveillance. True 
negatives based on predicted climatic risk cannot 
be identified from the available surveillance data. 

The spatial distribution of risk predicted 
by the MRPM agreed with the New Zealand 
Climex map produced by Kriticos et al. (2013) 
in suggesting that risk is relatively high in North 
Island lowland areas, but the two disagreed for 
the South Island. The MRPM predicted moderate 
risk for Tasman in the north-west South Island 
and occasional risk for the West Coast and 
Marlborough regions, but lower risk elsewhere, 
whereas Kriticos et al. (2013) suggested no 
South Island risk except for a very small area in 
the northeast. Results from the MRPM differed 
substantially from those of Magarey et al. (2007) 
and Hanna et al. (2012) who predicted low risk 
for most of the North Island and the South 
Island. Both the multi-model and the consensus 
model of Narouei-Khandan (2014), predicted a 
relatively restricted invasive range, with high risk 
confined to Northland, Auckland and northern 
Waikato. 

DISCUSSION 
Patterns of predicted risk and actual occurrence 
of A. psidii
The New Zealand areas predicted by the MRPM 
to have the greatest climatic risk of myrtle rust 
establishment are Northland, Auckland (except 
the isthmus), coastal Bay of Plenty and north 
Gisborne (East Cape), Waikato, northern Taranaki 
and north-west Tasman. Predicted risk is slightly 
lower, but still substantial, for the Auckland 
isthmus, low elevation areas of Taupo, inland 

Figure 8 Seasonal trends in monthly averages for 
Austropuccinia psidii infection risk, latent period 
and sporulation risk at the five calibration sites 
from January 2016 to March 2017. Myrtle rust 
was first detected in New Zealand in early May 
2017 (vertical line). Risk categories for infection 
and sporulation risk are: very low (0–0.2), low 
(0.2–0.4), moderate (0.4–0.6), high (0.6–0.8) and 
very high (0.8–1) and for latent period (in days): 
very low (>50); low (30–50); moderate (20–30); 
high (15–20); and very high (<15 days).
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Bay of Plenty, southern Taranaki, and the coastal 
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A. psidii establishment, including Tasman, where 
A. psidii has been found, and the West Coast, 
where it has not yet been found. The risk indicator 
variables produced by climatic risk models are 
generally undefined in terms the effects that they 
predict, e.g. pathogen presence, disease intensity, 
host damage or an aspect of impact. For the 
MRPM in New Zealand, ongoing calibration of 
the risk indices to better define their meaning 
will occur as more surveillance data comes to 
hand and as the impact of the disease becomes 
apparent. 

Other factors that should be quantified for 
their effect on myrtle rust risk and incorporated 
into the MRPM are host density, host growth 
and pathogen spore load. The latter two 
can be estimated from climatic data and are 
currently being investigated by PFR and NIWA, 
respectively. With the myrtle rust response 
moving into long-term management from April 
2018, the MRPM will be further used to underpin 
disease management planning for at-risk species 
of Myrtaceae in the natural estate, the urban 
environment and in commercial crops, such as 
feijoa and mānuka) that may be impacted by A. 
psidii. 
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(2017) of using separate bioclimatic risk analyses 
for strains identified by arbitrary genetic markers 
runs the risk that the chosen markers may not 
correlate with environmental adaptation of the 
pathogen. Empirical evidence would be required 
from controlled environment experiments that 
strains in the different genetic groupings actually 
show measurable differences in their response to 
variables like temperature and RH.

Austropuccinia psidii arrival in New Zealand 
and sources of infection
The exact date of arrival of A. psidii on mainland 
New Zealand is unknown, but for Taranaki, 
where myrtle rust was first detected early in the 
overall response and where the greatest number 
of regional detections occurred in the first year, 
a theoretical date for the first infection can be 
estimated. Logit linearisation of the disease 
detection curve (Figure 1B) from 17 May (first 
detection) to 31 August 2017 (when the seasonal 
detection rate slowed to its minimum), followed 
by linear regression and backward extrapolation, 
suggest that the first infection in Taranaki 
occurred on 29 March 2017. Myrtle rust was, thus, 
predicted to have been undetected in Taranaki for 
43 days after it may have first arrived. This brief 
analysis is only approximate because variations 
in surveillance intensity will have influenced 
the detection rate; however, it does provide an 
insight into the sort of delay that can be expected 
between the arrival and the detection of A. psidii 
in a new region. This has important implications 
for future control efforts, as it suggests that A. 
psidii was present and sporulating for quite a 
long time before detection, which would have 
made successful eradication unlikely. It seems 
likely that A. psidii arrived in New Zealand by 
wind transport across the Tasman Sea (Kim & 
Beresford 2008; R. Turner unpublished data), but 
it is not known whether its ongoing appearance in 
new regions has occurred as a result of continued 
arrival from offshore sources or from spread 
within New Zealand. The latter is expected to 
become more important over time. Most of the 

regions that became infected during the first year 
of the incursion were exposed to the west, which 
might suggest arrival from Australia, however, 
the western regions are also more climatically 
favourable for myrtle rust than eastern regions, 
according to the MRPM. 

E�ect of host growth on disease risk
The low number of new detections from late June 
to late October 2017 may have been caused by 
seasonal low temperatures affecting pathogen 
processes, but another important consideration is 
seasonal variation in host growth. Leaf and shoot 
tissues of susceptible myrtaceous hosts show 
a change from high susceptibility to resistance 
(ontogenic resistance) with increasing age (Xavier 
et al. 2015). When this interacts with seasonal 
flushes of host growth (Tessman et al. 2001) we 
believe it causes host-mediated seasonality of 
infection risk, with increased risk during periods 
of rapid shoot growth, particularly from spring 
through autumn. The winter decline in new A. 
psidii detections from the surveillance data is 
consistent with declining leaf emergence rates 
in the Lophomyrtus, Syzygium and Metrosideros 
host species. In fact, the seasonal variation in the 
A. psidii detection rate in New Zealand appeared 
more consistent with variation in host growth 
than with variation in climatic infection risk. 

CONCLUSIONS
The MRPM was developed as a collaborative 
effort to provide government agencies with 
important planning information during the 
initial phase of the myrtle rust incursion response 
in New Zealand. Use of the MRPM, linked to 
the NZCSM weather model, provided precise 
risk information with fine time resolution that 
was highly suitable for its tactical surveillance 
purpose. 

The MRPM provided more accurate prediction 
of the New Zealand regions where A. psidii has 
actually established than the bioclimatic models 
that have previously predicted climatic risk in 
New Zealand. Unlike the bioclimatic models, 
the MRPM has identified areas in more southern 
latitudes with short seasonal periods suitable for 
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A. psidii establishment, including Tasman, where 
A. psidii has been found, and the West Coast, 
where it has not yet been found. The risk indicator 
variables produced by climatic risk models are 
generally undefined in terms the effects that they 
predict, e.g. pathogen presence, disease intensity, 
host damage or an aspect of impact. For the 
MRPM in New Zealand, ongoing calibration of 
the risk indices to better define their meaning 
will occur as more surveillance data comes to 
hand and as the impact of the disease becomes 
apparent. 

Other factors that should be quantified for 
their effect on myrtle rust risk and incorporated 
into the MRPM are host density, host growth 
and pathogen spore load. The latter two 
can be estimated from climatic data and are 
currently being investigated by PFR and NIWA, 
respectively. With the myrtle rust response 
moving into long-term management from April 
2018, the MRPM will be further used to underpin 
disease management planning for at-risk species 
of Myrtaceae in the natural estate, the urban 
environment and in commercial crops, such as 
feijoa and mānuka) that may be impacted by A. 
psidii. 
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consistent with declining leaf emergence rates 
in the Lophomyrtus, Syzygium and Metrosideros 
host species. In fact, the seasonal variation in the 
A. psidii detection rate in New Zealand appeared 
more consistent with variation in host growth 
than with variation in climatic infection risk. 

CONCLUSIONS
The MRPM was developed as a collaborative 
effort to provide government agencies with 
important planning information during the 
initial phase of the myrtle rust incursion response 
in New Zealand. Use of the MRPM, linked to 
the NZCSM weather model, provided precise 
risk information with fine time resolution that 
was highly suitable for its tactical surveillance 
purpose. 

The MRPM provided more accurate prediction 
of the New Zealand regions where A. psidii has 
actually established than the bioclimatic models 
that have previously predicted climatic risk in 
New Zealand. Unlike the bioclimatic models, 
the MRPM has identified areas in more southern 
latitudes with short seasonal periods suitable for 
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APPENDIX: 
NZCSM key con�guration information

Configuration Item Settings
Domain size 1200 x 1350 x 70
Computational grid Rotated latitude / longitude
Model Top 40 km
Levels below 2 km 23
Dynamics time step 50 s
Radiation time step 600 s / 10 min
Data Assimilation Pseudo-analysis (merge NZLAM-12 background) 
IAU Period 2 hours (T-1 to T+1)
Observation types used Surface, Aircraft, Satellite (via NZLAM-12 background)
Forecast period 42 hours
Forecast frequency 4 times per day at 03, 09, 15 and 21 UTC (Analysis Time)
Forecast availability Analysis Time plus 6 hours 15 minutes
Lateral Boundary Conditions (LBC) Derived from NZLAM-12 run at 12 km horizontal resolution 
LBC Update frequency 30 mins

Output frequency Prognostic fields: 30 mins; Accumulations: Hourly, 3, 6, 12, 24 
hours
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APPENDIX: 
NZCSM key con�guration information

Configuration Item Settings
Domain size 1200 x 1350 x 70
Computational grid Rotated latitude / longitude
Model Top 40 km
Levels below 2 km 23
Dynamics time step 50 s
Radiation time step 600 s / 10 min
Data Assimilation Pseudo-analysis (merge NZLAM-12 background) 
IAU Period 2 hours (T-1 to T+1)
Observation types used Surface, Aircraft, Satellite (via NZLAM-12 background)
Forecast period 42 hours
Forecast frequency 4 times per day at 03, 09, 15 and 21 UTC (Analysis Time)
Forecast availability Analysis Time plus 6 hours 15 minutes
Lateral Boundary Conditions (LBC) Derived from NZLAM-12 run at 12 km horizontal resolution 
LBC Update frequency 30 mins

Output frequency Prognostic fields: 30 mins; Accumulations: Hourly, 3, 6, 12, 24 
hours
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