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EXECUTIVE SUMMARY 
 

Langley, A.D. (2019). An investigation of the performance of CPUE modelling approaches – a 
simulation study. 

New Zealand Fisheries Assessment Report 2019/57. 50 p. 

This study was conducted using a simple simulation framework to evaluate a range of standard CPUE 
modelling approaches. The primary focus of the study was to investigate the influence of the catch 
reporting regime and CPUE data processing in the evaluation of the CPUE modelling approaches 
routinely applied for the derivation of CPUE indices. 

The key conclusions of the simulation study are, as follows. 

• Positive catch models (lognormal, Gamma and Weibull) yielded biased estimates of trends in 
relative abundance for all species, with the exception of those species that were ubiquitous and 
occurred in almost all (> 95%) of the CPUE records. In all other cases, the positive catch CPUE 
indices under-estimated the scale of the variation in species abundance (hyper-stability) and this 
was most pronounced for species of intermediate abundance (second tier). 

• The inclusion of the binomial component in the combined delta-lognormal, delta-Gamma and 
delta-Weibull CPUE models generally compensates for the bias in the positive catch component 
of the CPUE models, particularly for the main species in the total catches. The combined CPUE 
indices closely approximated the trend in the species abundance for the five most abundant species; 
i.e., the species that were most regularly reported (either by trawl or day). 

• For the lower tier (less abundant) species, the delta-Gamma and delta-Weibull models yielded 
CPUE indices that were less biased than the delta-lognormal model. 

• The performance of the delta-lognormal models was more sensitive to the underlying distributional 
assumptions of the species (species occurrence and variability). The performance of the delta-
lognormal models deteriorated with the increasing contrast in the distribution of a species, 
corresponding to an increasing proportion of zero-catch records being included in the simulated 
data set (i.e., higher variation in species occurrence and catch rate). In general, the delta-lognormal 
CPUE indices tended to over-estimate the extent of the trends in relative abundance for those 
species with at least 50–60% of the data records comprising zero catches (i.e. the CPUE indices 
exaggerate the magnitude of the increase or decrease in stock abundance). 

• Overall, the delta-Weibull and delta-Gamma CPUE models were relatively insensitive to 
distributional assumptions of the simulated data and performed well even for data sets with a high 
proportion of zero-catch records.  

• While these “two-stage” models performed well for the range of species, in terms of accurately 
estimating the abundance trends, an examination of the model diagnostics (QQplots, residual plots, 
etc.) indicated that the positive catch components of these models may under-estimate the extent 
of variation in catches. Therefore, while the model diagnostics may indicate a deficiency in the 
overall performance of the CPUE model, the diagnostics do not provide a strong basis for deciding 
whether or not to accept the resulting CPUE indices as indices of relative abundance. 

• The deficiencies in the diagnostics from the negative binomial CPUE models were considerably 
greater than from the components of the ‘two-stage” models. The modelling results indicate that 
the structure of CPUE data do not conform to a negative binomial distribution and, consequentially, 
the negative binomial CPUE models were not considered appropriate for statistical inference. 

• Changes in species catch reporting have the potential to introduce a significant bias in the positive 
catch component of the CPUE indices for the lower tier (less abundant) species. The influence of 
changes in reporting was considerably lower for the “two-stage” combined models (delta-
lognormal, delta-Gamma and delta-Weibull), although the delta-Gamma and delta-Weibull CPUE 
models were considerably less sensitive to changes in reporting behaviour than the delta-lognormal 
models. 

• The concentration of fishing effort in areas of highest species abundance is likely to result in a 
degree of hyper-stability of the CPUE indices derived for the key species of interest. The extent of 
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the hyper-stability of the CPUE indices will be related to the underlying species distribution and 
the movement rates of the species. There is potential to reduce these effects by incorporating 
spatially structured approaches in the derivation of the CPUE indices. 

There is considerable scope to extend the current simulation approach to more realistically represent 
the spatial distributions of species assemblages, relative to habitat preferences, within specific fisheries 
areas as informed by spatially resolved data from trawl surveys and/or fisheries catch and effort data. 
Similarly, fisheries data could be applied to formulate alternative assumptions for the distribution of 
fishing effort relative to the abundance of individual species. 

Recommendations from the current study are as follows. 

• CPUE analyses should include a characterisation of the CPUE data set, including metrics that 
describe the overall prevalence of the species, the frequency of individual catch reporting, and the 
derivation of the positive catch records (via catch- or effort-based apportionment of total catches). 
The CPUE data set should be limited to the distribution of the species of interest; i.e., the data set 
should exclude effort records from outside the range of the species (defined by depth and/or area). 

• Characterising the intensity of fishing effort relative to the abundance of the species (e.g. 
concentration indices) is likely to be informative regarding the degree of hyper-stability in the 
CPUE indices. This is likely to be more important for the main target species. 

• Positive catch CPUE models (lognormal, Gamma or Weibull) are appropriate for ubiquitous 
species only; i.e., those species that occur in the reported estimated catches for most of the CPUE 
records (at least 95% of records in each year).  

• In all other cases, combined “two stage” models should be applied to determine CPUE indices. 
The Weibull and Gamma (log link) positive catch models appear more robust than the lognormal 
model across the range of species, although the lognormal models were comparable for the more 
abundant species. The final model selection should be based on standard model selection criteria 
(i.e., the proportion of variance explained). 

• Caution should be applied when evaluating CPUE indices that are based on positive catch records 
that include a considerable proportion (more than 20%) derived from the apportionment of landed 
catches amongst all associated fishing effort records (generating multiple, small notional catches).  
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1. INTRODUCTION 
Trends in the catch rates of fish species derived from commercial fishing activities are routinely used 
to monitor the abundance of fish stocks. The species catch rates from fisheries are typically expressed 
as annual indices of Catch Per Unit Effort (CPUE) and the indices are generally assumed to be 
proportional to the abundance of the stock or, at least, the component of the stock that is vulnerable to 
a fishery (through selectivity). 

A review of the stock assessments of New Zealand fish stocks revealed that 53 marine finfish stocks 
included CPUE indices as either the primary indicator of stock abundance or a key abundance index 
incorporated in the assessment modelling for the fish stock (Fisheries New Zealand 2018). A 
disproportionate number of the stocks assessed based primarily on CPUE indices are inshore finfish 
species, that are predominantly caught in trawl fisheries (such as red gurnard, John dory, flatfish, 
tarakihi, trevally, red cod, rig). In some regions, these CPUE indices augment trends in stock abundance 
derived from inshore trawl surveys, while in other areas the CPUE indices represent the primary index 
of stock abundance.  

The prevalence of CPUE indices in stock assessments is due, in part, to the availability of the catch and 
effort data routinely collected from the fisheries via statutory reporting forms. However, fishing activity 
is a non-random process, relative to the main species of interest, and may introduce significant biases 
in the estimation of trends in relative abundance from the resultant catch and effort data. The potential 
sources of bias in the CPUE indices are generally quite well understood and are primarily related to the 
degree of targeting (or avoidance) of an individual species, corresponding to changes in the distribution 
of fishing activity or changes in the efficiency of the fishing fleet.  

Generalised linear modelling (GLM) approaches are routinely used to “standardise” catch and effort 
data to derive annual CPUE indices for a species of interest, incorporating a range of potential 
explanatory variables that may influence the catchability of the species. Maunder & Punt (2004) provide 
a comprehensive review of CPUE modelling approaches. 

In the past, standardised CPUE analyses have tended to focus on the main species caught in a fishery 
and modelled the CPUE indices based primarily on the magnitude of the catch of the species (positive 
catch CPUE indices). Increasingly, CPUE analyses have also been applied to monitor the less abundant 
species, necessitating the inclusion of CPUE models that also take into account the encounter rate of 
the species (Lo et al. 1992, Stefansson 1996). These models are termed “combined”, “two-stage” or 
“hurdle” models as the CPUE indices are derived from two models: a model that estimates the 
probability of the catch (usually a binomial model), and a model that estimates the magnitude of the 
(non-zero) catch. Other approaches, such as negative binomial models, zero-inflated negative binomial 
models (Hilbe 2007) and Tweedie models, are also used to simultaneously model the null and positive 
catch components (Brodziack & Walsh 2013). 

For New Zealand inshore finfish fisheries, procedures have been developed for the processing of catch 
and effort data prior to the inclusion of these data in a standardised CPUE analysis (Starr 2007). These 
procedures primarily apportion the total landed catch of a species from the fishing trip amongst fishing 
event records, usually in proportion to the estimated catch. For the less important species, the reliability 
of the recording (reporting) of the catches may vary and CPUE indices based solely on positive catch 
records are likely to be biased (Langley 2015). Potential changes in the reliability of species catch 
reporting have contributed to the general adoption of two-stage CPUE models by the Inshore Fisheries 
Working Group. It is also recognised that for the less abundant species the changes in the encounter 
rate (species occurrence) may be an important indicator of a changes in overall species abundance and 
should be incorporated in the CPUE modelling approach. 

Despite the reliance of CPUE indices for the monitoring of many stocks, little attention has been given 
to the robustness of the approaches used to derive CPUE indices. A review of the published literature 
identified a limited number of simulation studies that have investigated the reliability of alternative 
CPUE indices using different modelling approaches (Campbell et al. 2017, Forrestal et al. 2017, 
Goodyear 2006, Neubauer 2017, Okamura et al. 2017, Petrere et al. 2010). Those studies generally 
focused on the derivation of CPUE indices for a single species of interest. However, for trawl fisheries, 
the catch and effort data are generally reported for multiple species caught from a species assemblage. 
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Therefore, the recording of a catch of an individual species will be influenced by the reporting 
requirements for the fishery; for example, for some inshore trawl fisheries only the catches of the five 
most predominant species caught (top 5) were routinely recorded for each trawl. Therefore, the 
abundance of an individual species, relative to the abundance of the other species in the assemblage, 
will influence the frequency of the reporting of catches of the species of interest and, hence, the observed 
encounter rate of the species. Simulation modelling provides an opportunity to investigate the most 
appropriate approach to model CPUE indices given the constraints of multi-species reporting and the 
established procedures used to process catch and effort data. Further, the approach can also be applied 
to investigate the potential effects of changes in species reporting over time. 

A proposal to conduct a CPUE simulation study was developed through the Stock Assessment Methods 
Working Group. The study was relatively modest in scope and was focussed on the development of a 
multi-species simulator to investigate the robustness of alternative CPUE modelling approaches and 
provide recommendations of the most appropriate approaches to determine standardised CPUE indices. 
The project was funded by Fisheries New Zealand under project code SEA2018-18 CPUE.  

2. METHODS 
A simulation approach was used to investigate the utility of a range of modelling approaches for 
standardising catch and effort data to derive CPUE indices of relative abundance. The range of 
candidate CPUE models included alternative distributions of catch, the modelling of the species 
occurrence, and the application of two-stage models. 

The accuracy of the reporting of catch data for an individual species is likely to be influenced by the 
abundance and prevalence of the species relative to other species in the composite catches. The 
simulator was configured to represent the catch reporting procedures typical of New Zealand inshore 
trawl fisheries, whereby multiple species (up to eight species) may be reported from each individual 
fishing event (trawl). Further, the simulator also attempts to mimic the approaches used to process the 
catch and effort prior to the CPUE modelling. The results of the simulations were used to evaluate the 
performance of each CPUE modelling approach for a range of species categorised according to their 
relative abundance and occurrence in the catch. 

2.1 Simulator configuration 
The simulator comprised five elements: species assemblage module, fishery module, reporting module, 
data processing module and a CPUE analysis module.  

Species assemblage module 

The simulator was configured to include nine (9) fish species that vary in the overall magnitude of 
abundance and independently vary in abundance over time. The overall scale of abundance amongst 
species was assumed to increase exponentially from the least abundant (species 9) to the most abundant 
species (species 1). The abundance of each species varied in accordance with random variation in annual 
recruitment and a constant rate of total mortality. The simulated catch from the fishery was not removed 
from the species population; i.e. the simulator was not a fully-integrated multispecies model, but rather 
was kept at a relatively simple level to facilitate interpretation and understanding. Levels of notional 
average species abundance ranged from about 1200 t (species 9) to 8000 t (species 1), with coefficients 
of variation of 8–20%. 

The abundance of each species was simulated over a 45 year period with the initial 25 years representing 
a “burn in” period. The subsequent 20 year period of species abundance represented the simulated time 
series of species abundance. For each species, the biomass (at year yr) was distributed across a spatial 
grid (matrix 10×10 cells) based on a joint distribution of the presence and abundance of the species (at 
year yr). The proportion of cells where the species occurred (at year yr) was defined as a function of 
the abundance of the species (at year yr). The occurrence of the species is considered to approach zero 
at very low levels of abundance and increase with increasing species abundance, although the nature of 
the relationship will vary depending on the degree of aggregation of the species. 

Two alternative formulations of the relationship between species occurrence and species abundance 
were defined. The first (Function A) was informed by a summary of the catch and effort data from 
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trawls in the WCNI, Hauraki Gulf and Bay of Plenty inshore trawl fisheries. For the twelve main species 
reported from the fishery, annual average catch rates and the frequency of positive catches were 
compared (for 2007/08 to 2016/17). These data showed similar patterns for each of the species 
examined, with the probability of catch increasing disproportionally relative to the catch rate of the 
species and approaching a high probability of catch at moderate levels of abundance, as generalised by 
Function A (Figure 1). 

An alternative formulation (Function B) was based on a simple simulation of species occurrence derived 
from a randomly distributed fish population (Figure 1). The probability of catch increases at a lower 
rate compared to Function A and reaches a lower maximum occurrence at high biomass levels. 

 
Figure 1: Assumed relationships between species abundance and the proportion of spatial cells where the 

species is present (occurrence).  

For each time interval, the proportion of cells where the species occurred (based on Function A or B) 
was applied to randomly select the individual cells (rbinom function) of the spatial grid for the allocation 
of biomass of the individual species. 

The relative proportion of the biomass of the species (at each time interval) was allocated to each 
selected cell based on a lognormal distribution with a specified standard deviation (mean=0, sd of 0.5 
or 1.0). This generated considerable variation in the distribution of species biomass amongst the 
individua1 cells. The extent of the variation was determined (in part) by the variation in the catches 
amongst the individual trawl records and, hence, the explanatory power of the CPUE models (so that 
R2 values were similar to those achieved from actual CPUE studies). 

The biomass of each species was not allocated specifically to a specific set of cells (of the spatial grid) 
in a manner that would approximate the habitat distribution of the species. Instead, the spatial allocation 
of the biomass was simply used as a mechanism for randomly distributing the biomass based on the 
distributional assumptions. 

Four main sets of simulated data (scenarios) were configured based on the combinations of the two 
functions for determining species occurrence and the two different levels of variation in abundance 
(Table 1). For these simulated datasets, the fishing effort was randomly allocated across the spatial grid. 
Two additional sets of simulated data were generated that allocated fishing effort in a non-random 
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manner either in proportion to the spatial distribution of the biomass of the most abundant species 
(Species1) or in proportion to the spatial distribution of the biomass of all nine species combined (Table 
1).  
Table 1: Configuration of the sets of simulated data (scenarios) generated based on different assumptions 

regarding species distribution (occurrence and variability) and the distribution of fishing effort 
amongst cells of the spatial grid. Occurrence functions A and B are as depicted in Figure 1. 

Scenario Species distribution Fishing effort distribution 
 Occurrence function Variation  
    
Scenario 1 A 0.5 Random 
Scenario 2 A 1.0 Random 
Scenario 3 B 0.5 Random 
Scenario 4 B 1.0 Random 
TrawlBiomass1 A 0.5 Proportional to Species1 biomass 
TrawlBiomassAll A 0.5 Proportional to Sum(Species1…9) biomass 

 

Fishery module 

The simulator included a fishery module to generate catch and effort data for a simple fisheries 
configuration. The simulated fishery operated throughout the 20 year period at a constant level of 
fishing activity with four vessels each conducting 27 trawls per month (three trips of three days duration 
conducting three trawls per day). Fishing activity was allocated across the spatial grid (100 cells 
x=1:10,y=1:10) at each time interval (year, month). All simulated trawls were of a constant 
distance/duration. 

For each simulation, a set of vessel specific fishing efficiency coefficients (Vesselq, n=4) was derived 
from a normal distribution (mean 0, std dev 0.30). The scale of the variation in the vessel coefficients 
is comparable to the variation in vessel coefficients from GLM standardisations of CPUE data in inshore 
trawl fisheries. Similarly, for each simulation, species availability varied seasonally, configured using 
a sine curve with variation in the timing and amplitude of the seasonal effect (MonthSpecies 1….9).  

Each trawl had an associated catch of each species (1 to 9). The magnitude of an individual trawl catch 
of a species by vessel v at a specific x,y location (loc) in year yr and month m was determined by: 

CatchSpecies1trawl = BiomassSpecies1yr,loc * exp(Vesselqv) * exp(MonthSpecies1m) 

Zero (null) catches were assigned to trawl records with no catch of the species (i.e. from trawls in cells 
with no biomass). 

No additional sources of variation in trawl catches were incorporated in the derivation of the catch and 
effort data. The main source of variation was attributable to the variation in biomass amongst the 
individual cells of the spatial grid defined by the species assemblage module.  

Fishing activity (trawls) was allocated across the spatial grid (x,y) at each time interval (year, month). 
For the initial scenarios, individual trawls were allocated randomly amongst all the cells of the spatial 
grid (Table 1). Two additional scenarios were configured based on alternative assumptions for the 
spatial distribution of trawls at each time interval: in proportion to the biomass of a single species with 
the highest overall abundance (Species1) or in proportion to the aggregate biomass of all nine species 
(Table 1). 
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Reporting Module 

The simulated trawl records were configured in a format to approximate the statutory reporting forms 
used in the trawl fisheries over the last 10–20 years. Two main form types were considered: the CELR 
which essentially reports fishing effort and catch of the five main species for each day of fishing and 
the TCEPR which records individual trawl activity and the catch of the five main species per trawl. 

For the TCEPR trawl data format, the reporting module derived a data record for each individual fishing 
event. The species catches from each trawl were ranked by catch weight and the catches of the five 
largest species catches were recorded for the individual trawl (representing the estimated catches). For 
the CELR day data format, the reporting module aggregated all trawls conducted by a vessel during a 
fishing day. The daily catches were aggregated by species and ranked by the total catch weight. The 
daily catches of the five species with the largest catches were recorded for the specific fishing day. 

For each fishing trip, the aggregated catch of each species from the trip was also determined, 
representing the landed catch records for the trip. All simulated trawl catches, daily catches and landed 
catches were reported without error. 

Data processing module 

The simulator included a data processing module to approximate the established protocols used to 
formulate CPUE data sets from the reported catch and effort data (Starr 2007). The data processing 
primarily involves the apportionment of the landed species catches from a fishing trip amongst the 
associated fishing records with reported catches of the species (catch based allocation). For those 
species with no corresponding reported catch records, the landed catch of the species is apportioned 
equally amongst the associated fishing effort records (effort based allocation). Typically, the effort 
based allocation generates effort records with numerous small catches of a species and no zero-catch 
records (for the fishing trip). 

The data processing was conducted for the trawl and day catch and effort data sets separately. The 
resultant allocated catches represent the species catches that are included in the CPUE modelling. For 
each species, the proportion of the catch records generated by either allocation method was summarised 
for each simulated data set. 

CPUE analysis module 

For each simulation, a Generalised Linear Modelling (GLM) approach, implemented in the R statistical 
software package, was applied to the catch and effort records for each species (1 to 9) to derive sets of 
CPUE indices (following Venables & Ripley 1999). The standardised CPUE models had the generic 
format: 

SpeciesCatch1trawl ~ FishingYearyr + Vesselv + Monthm + Errortrawl 

where the three explanatory variables were included in the models as categoric variables. All trawls 
were of a constant distance/duration and, hence, no additional effort variables were incorporated in the 
CPUE models. 

A range of different model options were evaluated using various distributional assumptions (Table 2). 
For each model option, the CPUE indices (for each Species 1...9 and Simulation 1…100) were derived 
from individual FishingYears using the predict function and normalised to the average of the 20 year 
time series. CPUE indices were also derived from the two-stage models which combined the binomial 
indices with the indices from the Log-normal (delta-lognormal), Gamma (delta-Gamma) and Weibull 
(delta-Weibull) models (Lo et al. 1992, Stefansson 1996). 

Initially, the range of candidate CPUE model options also included a Zero-inflated negative binomial 
(ZipNB) model. However, problems were encountered in attaining an adequate level of convergence 
for these models and the ZipNB model was excluded from the final suite of CPUE models evaluated. 
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Table 2: The range of model options included in the set of CPUE models evaluated. 

Distribution Link function Dependent variable 
   
Binomial logit Zero catch (0); positive catch (1) 
Log-normal log Catch, excluding zeroes 
Gamma log Catch, excluding zeroes 
Weibull log Catch, excluding zeroes 
Negative binomial log, theta=2 Catch, incl. zero 
Tweedie 
(compound Poisson distribution) 

tweedie(var.power = 1.5) Catch, incl. zero 

 

Summary Statistics 

For each Scenario (see Table 1), a set of 100 simulations was conducted. Each set of simulations 
included the derivation of CPUE indices for the nine species from the nine CPUE model options. 

For each CPUE model, the proportion of the total deviance (in species catch) explained by the CPUE 
model was determined. The individual sets of CPUE indices derived from each model were compared 
to the time series of biomass for the species, normalised for the 20 year period (NormBiomass).  

The performance of each CPUE model was determined from the correlation coefficient and the slope 
of the linear relationship (b) between the predicted and “actual” simulated species abundance. The 
correlation coefficients reveal the extent of the deviation in the CPUE indices from the annual species 
abundance, while the slope parameter reveals the proportionality of the relationship between the CPUE 
indices and the species abundance. A slope parameter of less than 1.0 indicates that the CPUE indices 
vary less than the species abundance (hyper-stability), while a slope of greater than 1.0 indicates that 
the scale of the variation in CPUE indices is greater than the variation in species abundance (e.g. hyper-
depletion).  

For presentation purposes, the simulation results were aggregated by species and CPUE modelling 
approach. 

Simulated data sets 

The simulation data sets were characterised using a range of metrics for each species (combined for all 
simulations). These metrics are similar to summary statistics used to characterise the catch and effort 
data included in actual CPUE analyses. The specific metrics are as follow. 

• Average rank of species in the total catch (TripRank). 
• Average rank of species in individual reported (estimated) catches (where catch > 0) (CatchRank). 
• Proportion of positive catch records (proportion non-zero) (PropCatch). 
• Proportion of landed catch allocated to estimated catches (allocation flag 1) (PropCatch1). 
• Proportion of landed catch allocated based on effort (allocation flag 2) (PropCatch2). 
• Proportion of positive catch records derived from estimated catches (allocation flag 1) 

(PropRecord1). 
• Proportion of positive catch records derived from allocation based on effort (allocation flag 2) 

(PropRecord2). 

For the trawl based data, the rank of the individual species in the total catches (TripRank) is consistent 
with the simulated level of biomass for each species (Table 3). However, the rankings of the catches of 
the species in the individual catches (CatchRank) tend to be lower than the overall magnitude of the 
abundance of the species, especially for the species below the top tier of species (Species 1–3). This 
relates to the lower proportion of positive reported catches of these species and hence the individual 
species are only reported when they occur amongst the five largest catches. Increasing the variation in 
species biomass (SD = 0.5 or 1.0) resulted in a lower proportion of positive reported catches for all 
species, although the effect was greater for the lower tier species (Species 7–9) (Table 3).  

For all species, most of the landed catch is allocated to the individual trawl records based on trawl 
catches; i.e. catch based allocation (Table 3). However, for the lower tier species (Species 7–9) a 
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considerable proportion of the trawl records with a positive catch were derived via the effort based 
allocation (i.e. trips with no positive catches reported for the species) (Table 3).  

The aggregation of trawl catches in the day format yields a higher proportion of positive catches 
compared to the trawl data set (Table 4). However, for the lower tier species (Species 7–9) a higher 
proportion of the species catches were derived from the effort based allocation of landed catch, related 
to the lower likelihood of reporting catches of the lower ranked species amongst the five main species 
caught during a day. Correspondingly, a substantial proportion of the positive catch records (number of 
records) for the lower tier species were derived based on the effort allocation of landed (trip) catch. 
Further, a considerable proportion of the intermediate tier species (Species 4–6) were also derived from 
the effort allocation of catch (Table 4). 
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Table 3: Summary statistics for the Trawl based simulation data sets derived for each of the main data 
configuration scenarios. The data scenarios are defined in Table 1 and the summary metrics and 
described in Section 3.1. 

Scenario 1 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 

1 1.5 0.9 0.846 0.999 0.001 0.984 0.016 
2 2.2 1.4 0.787 0.998 0.002 0.976 0.024 
3 3.2 1.8 0.721 0.997 0.003 0.970 0.030 
4 4.0 2.0 0.652 0.994 0.006 0.949 0.051 
5 4.9 2.2 0.580 0.988 0.012 0.905 0.095 
6 5.9 2.4 0.534 0.975 0.025 0.834 0.166 
7 7.1 2.6 0.481 0.963 0.037 0.771 0.229 
8 7.7 2.5 0.478 0.943 0.057 0.652 0.348 
9 8.5 2.6 0.468 0.918 0.082 0.535 0.465 
        

Scenario 2 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.5 1.0 0.729 1.000 0.000 1.000 0.000 
2 2.5 1.2 0.662 1.000 0.000 0.999 0.001 
3 3.2 1.6 0.587 1.000 0.000 0.997 0.003 
4 3.9 1.7 0.513 1.000 0.000 0.991 0.009 
5 5.1 1.8 0.448 0.999 0.001 0.980 0.020 
6 5.8 1.9 0.392 0.998 0.002 0.962 0.038 
7 6.8 1.9 0.344 0.996 0.004 0.922 0.078 
8 7.8 1.9 0.303 0.993 0.007 0.873 0.127 
9 8.5 2.0 0.269 0.989 0.011 0.810 0.190 
        

Scenario 3 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.4 1.4 0.792 1.000 0.000 0.995 0.005 
2 2.3 1.7 0.737 1.000 0.000 0.996 0.004 
3 3.0 1.8 0.679 0.999 0.001 0.989 0.011 
4 4.0 1.9 0.607 0.999 0.001 0.979 0.021 
5 5.1 2.0 0.545 0.998 0.002 0.964 0.036 
6 6.2 2.3 0.488 0.996 0.004 0.944 0.056 
7 6.8 2.3 0.452 0.991 0.009 0.858 0.142 
8 7.8 2.5 0.419 0.984 0.016 0.779 0.221 
9 8.4 2.6 0.400 0.979 0.021 0.708 0.292 
        

Scenario 4 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.5 1.0 0.724 1.000 0.000 1.000 0.000 
2 2.3 1.3 0.657 1.000 0.000 0.999 0.001 
3 3.0 1.7 0.586 1.000 0.000 0.998 0.002 
4 4.1 2.0 0.511 1.000 0.000 0.994 0.006 
5 4.9 2.0 0.447 1.000 0.000 0.985 0.015 
6 5.9 2.0 0.391 0.999 0.001 0.968 0.032 
7 6.8 2.0 0.340 0.998 0.002 0.936 0.064 
8 7.9 2.0 0.298 0.997 0.003 0.896 0.104 
9 8.6 2.0 0.266 0.995 0.005 0.853 0.147 
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Table 4: Summary statistics for the Day based simulation data sets derived for each of the main data 
configuration scenarios. The data scenarios are defined in Table 1 and the summary metrics and 
described in Section 3.1. 

Scenario 1 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.5 0.8 0.935 0.992 0.008 0.932 0.068 
2 2.2 1.2 0.898 0.984 0.016 0.908 0.092 
3 3.2 1.7 0.859 0.970 0.030 0.872 0.128 
4 4.0 2.1 0.819 0.946 0.054 0.809 0.191 
5 4.9 2.3 0.787 0.903 0.097 0.687 0.313 
6 5.9 2.4 0.785 0.841 0.159 0.558 0.442 
7 7.1 2.8 0.772 0.761 0.239 0.434 0.566 
8 7.7 2.9 0.799 0.700 0.300 0.329 0.671 
9 8.5 3.1 0.825 0.600 0.400 0.235 0.765 
        

Scenario 2 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.5 1.1 0.879 0.994 0.006 0.950 0.050 
2 2.5 1.6 0.837 0.991 0.009 0.939 0.061 
3 3.2 1.7 0.793 0.980 0.020 0.885 0.115 
4 3.9 1.8 0.759 0.966 0.034 0.804 0.196 
5 5.1 2.2 0.722 0.943 0.057 0.726 0.274 
6 5.8 2.4 0.701 0.919 0.081 0.641 0.359 
7 6.8 2.4 0.688 0.884 0.116 0.534 0.466 
8 7.8 2.6 0.675 0.838 0.162 0.440 0.560 
9 8.5 2.6 0.659 0.797 0.203 0.360 0.640 
        

Scenario 3 

Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.4 1.1 0.876 0.995 0.005 0.951 0.049 
2 2.3 1.5 0.834 0.990 0.010 0.932 0.068 
3 3.0 1.7 0.803 0.981 0.019 0.877 0.123 
4 4.0 1.9 0.759 0.966 0.034 0.814 0.186 
5 5.1 2.3 0.727 0.944 0.056 0.738 0.262 
6 6.2 2.6 0.703 0.909 0.091 0.641 0.359 
7 6.8 2.5 0.731 0.873 0.127 0.505 0.495 
8 7.8 2.6 0.745 0.822 0.178 0.396 0.604 
9 8.4 2.7 0.754 0.775 0.225 0.321 0.679 
        

Scenario 4 
Species TripRank CatchRank PropCatch PropCatch1 PropCatch2 PropRecord1 PropRecord2 
1 1.5 1.2 0.851 0.997 0.003 0.965 0.035 
2 2.3 1.7 0.801 0.994 0.006 0.952 0.048 
3 3.0 1.7 0.759 0.990 0.010 0.902 0.098 
4 4.1 2.0 0.710 0.981 0.019 0.849 0.151 
5 4.9 2.1 0.684 0.968 0.032 0.760 0.240 
6 5.9 2.3 0.662 0.951 0.049 0.680 0.320 
7 6.8 2.5 0.648 0.931 0.069 0.576 0.424 
8 7.9 2.6 0.634 0.906 0.094 0.488 0.512 
9 8.6 2.8 0.618 0.876 0.124 0.421 0.579 

 



 

12 • Evaluating CPUE modelling approaches  Fisheries New Zealand 
 

3. RESULTS 
3.1 Simulator evaluation 
Initially, the performance of the simulator was evaluated by generating data sets without the inclusion 
of the reporting module. This generated trawl catches for all nine species that were not influenced by 
the constraints related to reporting catches of only the five most abundant species in the catch. The 
expectation was that the resulting species specific CPUE models would be consistent with the basic 
structure of the data set and, hence, generate CPUE indices that were consistent with the trends in 
species biomass. 

The positive catch models (lognormal, Weibull, Gamma) yielded CPUE indices that were accurate for 
the most abundant species, with correlation coefficients (Figure 2) and slope parameters (Figure 3) 
approaching 1.0 for Species Rank 1. However, the positive catch CPUE indices were increasingly 
biased for the less abundant species, as indicated by the decline in the correlation coefficients (Figure 
2) and slope parameters (Figure 3) for the lower ranked species. This corresponds with the simulated 
spatial distribution of each species, with a lower proportion of cells assigned biomass for the less 
abundant species and hence a lower probability of catching those species. An index composed of only 
the positive catches of the species will not incorporate the change in the encounter rate of the species 
and will result in hyperstability of the derived indices (slope parameters less than 1.0) (Figure 3).  

Conversely, the model options that incorporated the zero-catch component yielded CPUE indices that 
were consistent with the biomass trends for all species; i.e. correlation coefficients approaching 1.0 and 
slopes between the CPUE indices and biomass that approximated 1.0 (Figure 2 and Figure 3). Overall, 
the delta-lognormal, delta-Weibull, delta-Gamma and Negative binomial models yielded CPUE indices 
that closely represent the underlying biomass trends. 

These preliminary results indicated that the simulator was performing in accordance with the underlying 
assumptions regarding the distribution of biomass and provided an appropriate platform for evaluating 
more complex data sets (including the reporting module). 
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Figure 2: Boxplots of the correlation coefficients between the CPUE indices and simulated species 

abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated data sets (n = 100) were configured for initial 
evaluation of the simulator, as follows: data format trawl, species occurrence function A (Figure 
1), variation in species distribution SD 0.5, trawl distribution random, reporting module excluded.  
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Figure 3: Boxplots of the slope (b) of the linear relationship between the CPUE indices and simulated species 

abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated data sets (n = 100) were configured for initial 
evaluation of the simulator, as follows: data format trawl, species occurrence function A (Figure 
1), variation in species distribution SD 0.5, trawl distribution random, reporting module excluded.  
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3.2 CPUE simulation modelling – Trawl based data sets 
The simulator was applied to evaluate the reliability of CPUE models derived from trawl-based data 
simulated, including the reporting module, for each Scenario prescribed in Table 1. For presentation 
purposes, detailed results are described for a single scenario (Scenario 1) and any key differences in the 
results from the other data scenarios are highlighted. Summary results from all (6) scenarios are also 
presented in Appendix 1 (Tables A1–A4). 

The positive catch CPUE models (lognormal, Weibull and gamma) of the trawl based data (Scenario 
1) accounted for approximately 30–50% of the total variation in the trawl catches of each species 
(Figure 4). These simulated results are broadly consistent with the proportion of the variation explained 
in the analysis of trawl based CPUE data from inshore trawl fisheries (for example, SNA 8 R2 0.37, 
JDO 1 WCNI R2 0.372, JDO 1 HG-ENLD R2 0.441, JDO 1 BPLE R2 0.291). By comparison, the CPUE 
models that include the zero-catch component (binomial, negative binomial and Tweedie) explained a 
considerably lower proportion of the total variance in catch (Figure 4). 

For the most abundant species (Species 1 to 3), there was a strong correlation between the CPUE indices 
for all model options (corr coef close to 1.0) indicating that the CPUE models reliably estimated the 
annual variation in species biomass (Figure 5). However, for the positive catch models (lognormal, 
Weibull and Gamma), the slope of the relationship between the CPUE indices and biomass of the most 
abundant species was considerably less than unity (slope = 1), indicating the CPUE models consistently 
under-estimated the overall scale of the trend in relative abundance (Figure 6).  

For the least abundant species (Species 5 to 9), the positive catch models (lognormal, Weibull and 
Gamma) poorly estimated the variation (Figure 5) and trend (Figure 6) in species abundance.  

For the full range of species, the hurdle models (delta-models and negative binomial models) yielded 
the most reliable estimates of trends in species abundance (i.e. correlation coefficients and slope 
parameters approximating 1.0) (Figure 6). However, for the less abundant species (Species 5 to 9), the 
delta-lognormal models tended to over-estimate the scale of the variation in the abundance trend (slope 
parameters greater than 1.0) (Figure 6). The Tweedie models tended to perform relatively poorly across 
the range of species (median slope parameters approximately 0.85). 

The differences in the performance of the delta-lognormal models amongst species tended to be more 
pronounced for the data sets with higher variation in the positive catches and with a higher proportion 
of zero catches (Occurrence function B; Figure 1) incorporated in the simulated data sets (Figure 7). 
For the four data scenarios, the delta-lognormal models performed well for the four most abundant 
species, but model performance deteriorated for the less abundant species, especially with a higher 
proportion of zero catches (Occurrence function B; Figure 1) incorporated in the simulated data sets. In 
general, the performance of the delta-lognormal models was lower for data sets that included zero-catch 
records for more than 50% of the records (see Table 3). These species data sets were also composed of 
at least 10% of positive catch records that were generated by the allocation of catches amongst the effort 
records (effort-based allocation) rather than amongst recorded catches (catch-based allocation).  

Overall, the Negative binomial, delta-Weibull, delta-Gamma models performed well for the range of 
species (1 to 9) and for the four different data configurations with correlation coefficients and slope 
metrics of approximately 1.0 (Figure 7). For these model options, there was only a small deterioration 
in model performance for the lowest ranked species (8 and 9) for the data configurations with the higher 
proportion of zero catches (correlation coefficients less than 0.95, slope approximately 1.0) (Appendix 
1 Tables A1, A2).  

Three alternative mechanisms for allocating trawl effort were considered: random allocation of effort 
(Scenario 1), the allocation of effort in proportion to the abundance of a single (target) species (Species 
1) (Scenario TrawlBiomass1) and the allocation in proportion to the total abundance of all species 
(Species 1 to 9) (Scenario TrawlBiomassAll). The comparative models revealed that the allocation of 
effort in proportion to the abundance of a single (target) species introduced a degree of hyper-stability 
(slope parameters less than 1.0) in the relationship between the CPUE indices and the biomass of the 
species of interest (target species) for all model options (Figure 8, Appendix 1 Tables A3 and A4). An 
additional set of trials revealed that the biases in the CPUE indices were not ameriorated by reweighting 
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of the data records; i.e. weighting each record inversely proportional to the total number of records in 
each x, y, cell per year. 

 

 
 
Figure 4: Boxplots of the R2 statistics from each CPUE modelling approach for each of the 9 species (ranked 

1 to 9, most abundant to least abundant) from the simulated trawl data sets (n = 100) for Scenario 
1; i.e., species occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl 
distribution random, reporting module included.  
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Figure 5: Boxplots of the correlation coefficients between the CPUE indices and simulated species 

abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated trawl data sets (n = 100) for Scenario 1; i.e., species 
occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl distribution 
random, reporting module included.  
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Figure 6: Boxplots of the slope (b) of the linear relationship between the CPUE indices and simulated species 
abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated trawl data sets (n = 100) for Scenario 1; i.e., species 
occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl distribution 
random, reporting module included.  
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Figure 7: Average slope and correlation coefficients (from 100 simulations) for each species (1 to 9, colour 

coded) from selected trawl based CPUE models (L, lognormal; dL, Delta-lognormal; W, Weibull; 
dW, delta-Weibull; G, Gamma; dG, Delta-Gamma; T, Tweedie; NB, negative binomial) and 
different data configurations (panels). 
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Figure 8: Boxplots of the slope (b) of the linear relationship between the CPUE indices and simulated species 

abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated trawl data sets (n = 100) for Scenario 1; i.e., species 
occurrence function A (Figure 1), variation in species distribution SD 0.5, trawls distributed 
relative to the abundance of Species 1, reporting module included.  
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3.3 CPUE simulation modelling – Day based data sets 
The CPUE modelling was repeated for the simulated data sets (specified in Table 1) with the data 
reformatted in the day summary format. For comparison with the trawl based simulations, detailed 
results are presented for data Scenario 1 and summarised results of the range of scenarios are presented 
in Appendix 1 (Tables A5–A8). 

The positive catch CPUE models (lognormal, Weibull and gamma) of the day based data (Scenario 1) 
accounted for approximately 50–70% of the total variation in the daily catches of each species (Figure 
9). The proportion of the variation explained is considerably higher than for the corresponding trawl 
based CPUE models due to the aggregation of the individual trawls records. However, these simulated 
results also explain a considerably higher proportion of the variation than that typically explained in the 
analysis of day based CPUE data from inshore trawl fisheries (for example, TAR 1 BPLE R2 0.401, 
TAR 2 R2 0.551, TAR 3 R2 0.373, GUR 2). This suggests that the simulated data set (Scenario 1) does 
not adequately represent the variation in the daily catches observed in the inshore commercial fisheries. 
However, the CPUE models derived from the other data scenarios (2–4) yielded R2 values comparable 
to the results of the published studies. 

In general, the CPUE modelling of day aggregated catch and effort records yielded results that were 
comparable to the results from the modelling of the trawl based data. Most of the CPUE models yielded 
indices that were well correlated with the biomass trends for each species, with the exception of the 
binomial model (Figure 10). The lognormal, Weibull and Gamma positive catch models tended to 
under-estimate the scale of the trend in relative biomass for the main species (Species 1–5) (slope 
parameter less than 1.0) and over-estimate the scale of the trend in relative biomass for the lesser species 
(Species 7–9) (slope parameter greater than 1.0) (Figure 11).  

Incorporating the binomial CPUE indices in the two-stage models (delta-lognormal, delta-Weibull, 
delta-Gamma) CPUE indices moderated the trends in the positive catch indices and the three sets of 
combined indices yielded relatively unbiased CPUE indices for the full range of species (Species 1 to 
9) (Figure 11). However, for most species, the performance of the delta-lognormal CPUE indices 
deteriorated when the variation in species distribution was increased (SD 1.0) and the proportion of zero 
catches was increased (under the Figure 1 Occurrence function B) (Figure 12). The delta-Weibull and 
delta-Gamma models were relatively robust to the changes in data formulation. Nonetheless, the 
Negative Binomial models appeared to perform marginally better than the two-stage CPUE models for 
all species, with correlation coefficients close to 1.0 and slope values approximating 1.0 (Figure 10 and 
Figure 11). 
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Figure 9: Boxplots of the R2 statistics from each CPUE modelling approach for each of the 9 species (ranked 
1 to 9, most abundant to least abundant) from the simulated day data sets (n = 100) for Scenario 
1; i.e., species occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl 
distribution random, reporting module included.  
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Figure 10: Boxplots of the correlation coefficients between the CPUE indices and simulated species 
abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated day data sets (n = 100) for Scenario 1; i.e., species 
occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl distribution 
random, reporting module included.  



 

24 • Evaluating CPUE modelling approaches  Fisheries New Zealand 
 

 
 
Figure 11: Boxplots of the slope (b) of the linear relationship between the CPUE indices and simulated 

species abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for 
each CPUE modelling approach. The simulated day data sets (n = 100) for Scenario 1; i.e., species 
occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl distribution 
random, reporting module included.  
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Figure 12: Average slope and correlation coefficients (from 100 simulations) for each species (1 to 9, colour 

coded) from selected day based CPUE models (L, lognormal; dL, Delta-lognormal; W, Weibull; 
dW, delta-Weibull; G, Gamma; dG, Delta-Gamma; T, Tweedie; NB, negative binomial) and 
different data configurations (panels). 
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3.4 Simulating changes in species catch reporting 
An additional set of simulations were conducted that changed the level of reporting of trawl catches 
during the time period; trawl based catches were reported for the five most abundant species for the 
first 10 years and then reporting was extended to encompass the eight most abundant species for the 
subsequent 10 years. The simulations were based on trawl data simulated using the equivalent 
configuration to Scenario 1 (SD 0.5, Occurrence function A; Figure 1). 

These simulations revealed a marked deterioration in the accuracy of the positive catch models 
(lognormal, Weibull and Gamma) for almost all species, although the effect was most pronounced for 
the medium and lower tier species (Species 4 to 9) (Figure 13). There was also a considerable 
deterioration in the accuracy of the CPUE indices from the binomial model associated with the change 
in reporting. However, the corresponding trends in the binomial and lognormal CPUE indices are 
generally negatively correlated (relative to the trend in biomass) (Figure 14) and, hence, the combined 
model (delta-lognormal) has a tendency to moderate the influence of the change in reporting. For 
example, the increased level of reporting will result in a lower proportion of zero catches being reported 
during the latter period (positively biasing the binomial index) while the change in reporting will 
negatively bias the lognormal index as there are more, smaller catches during the latter period. 

The simulated results revealed that the two-stage models (delta-lognormal, delta-Weibull, delta-
Gamma) models yielded CPUE indices that compensated for the change in reporting for all but the 
lowest tier of the species (Species 8 and 9) while the negative binomial model yielded unbiased CPUE 
indices for the entire range of species (Figure 15 and Figure 16). 
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Figure 13: Average slope and correlation coefficients (from 100 simulations) for each species (1 to 9, colour 

coded) from selected trawl based CPUE models (L, lognormal; dL, Delta-lognormal; W, Weibull; 
dW, delta-Weibull; G, Gamma; dG, delta-Gamma; T, Tweedie; NB, negative binomial) for data 
configuration Scenario 1 (top panel) and a scenario with a change in the reporting of species 
catches (from five species to eight species). 
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Figure 14: A comparison of the slope of the relationships between the binomial CPUE indices and simulated 
species abundance (y-axis) and the lognormal CPUE indices and simulated species abundance (x-
axis) from 100 individual simulations for each of the 9 species (ranked 1 to 9, most abundant to 
least abundant). The simulated trawl data sets (n = 100) is based on Scenario 1 and includes a 
change in species catch reporting. 



 

Fisheries New Zealand Evaluating CPUE modelling approaches • 29 

 

 

Figure 15: Boxplots of the correlation coefficient between the CPUE indices and simulated species 
abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for each 
CPUE modelling approach. The simulated trawl data sets (n = 100) is based on Scenario 1 and 
includes a change in species catch reporting. 
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Figure 16: Boxplots of the slope (b) of the linear relationship between the CPUE indices and simulated 
species abundance for each of the 9 species (ranked 1 to 9, most abundant to least abundant) for 
each CPUE modelling approach. The simulated trawl data sets (n = 100) is based on Scenario 1 
and includes a change in species catch reporting. 
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3.5 Model diagnostics 
Standard model diagnostics are an important tool for the routine evaluation of positive catch CPUE 
models and, to a lesser extent, binomial models. The model diagnostics tend to be limited to 
distributional plots of model residuals, plots of observed vs expected values and quantile-quantile plots.  

For a subset of the simulated results, model diagnostics were examined for the lognormal, Weibull and 
Gamma CPUE models. Similarly, comparative plots of the observed and predicted probability of catch 
were examined for binomial models. Overall, the binomial models accurately predicted the annual 
proportion of positive catch records in each species data set (Appendix 2, Figure A1). For the three 
positive catch models, the predicted distributions of catches were generally comparable to the observed 
catches for the most abundant species (Species 1–3) (Appendix 2, Figure A2–4). For the intermediate 
species (Species 4–7) the three models generally under-estimated the proportion of very small catches 
and also under-estimated the upper distribution of the observed catches (Appendix 2, Figure A2–4), 
although the average catch is well estimated. Qualitatively, these diagnostics might be interpreted as a 
poor performance of the positive catch CPUE models (from QQ plots, residuals, etc.).  

For the positive CPUE models for the two least abundant species (Species 8 and 9) the predicted 
distributions of catches were generally comparable to the observed catches (Appendix 2, Figure A2–4), 
although the Gamma model performed best for the smallest catches. 

A more thorough evaluation of model performance was conducted for the negative binomial models. 
The CPUE indices derived from these models very closely approximated the trends in species 
abundance, seemingly exceeding the performance of the two-stage (delta-lognormal, delta-Gamma and 
delta-Weibull) CPUE models. However, an examination of the diagnostics reveals that the models 
represent a very poor fit to the individual observations (Figure 17 and Figure 18). Overall, the models 
estimate a very low proportion of zero catches, instead estimating a higher proportion of relatively small 
catches. The models also under estimate the extent of the upper range of observed catches, while, for 
each species, the negative binomial models almost exactly predicts the arithmetic mean of the annual 
catch rates (Figure 19) and, hence, the species relative abundance. 

These diagnostics reveal that the distributional structure of the catch and effort data sets is not consistent 
with the negative binomial distribution. Consequently, the resultant models are not statistically robust 
for model inference, including the determination of confidence intervals for the key parameters of 
interest (especially those associated with the annual coefficients). 
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Figure 17: An example of a comparison of individual observed catches and predicted catches from negative 

binomial CPUE models by species from one simulated data set (trawl data configured for Scenario 
1; i.e., species occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl 
distribution random, reporting module included). 
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Figure 18: An example of a comparison of density plots of observed (black line) and predicted (red line) 

catches from negative binomial CPUE models by species from one simulated data set (trawl data 
configured for Scenario 1; i.e., species occurrence function A (Figure 1), variation in species 
distribution SD 0.5, trawl distribution random, reporting module included). 
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Figure 19: An example of a comparison of the observed arithmetic mean CPUE (catch per trawl) (black 

line and points) and the predicted (red line and points) annual CPUE from negative binomial 
CPUE models by species from one simulated data set (trawl data configured for Scenario 1; i.e., 
species occurrence function A (Figure 1), variation in species distribution SD 0.5, trawl 
distribution random, reporting module included). 
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4. DISCUSSION 
This study was conducted using a simple simulation framework to evaluate a range of standard CPUE 
modelling approaches. The primary focus of the study was to investigate the influence of the catch 
reporting regime and CPUE data processing in the evaluation of the CPUE modelling approaches 
routinely applied for the derivation of CPUE indices. The trawl and day based reporting regimes, 
approximated in the simulation process (reporting module), will tend to result in the under-reporting of 
the presence of an individual species in the total catches, especially for the less abundant species. Within 
the CPUE modelling framework, poor reporting of small catches has the potential to result in the over-
estimation of the probability of a zero catch in a binomial CPUE model, thereby negatively biasing the 
binomial component of the CPUE index. The data processing applied to the CPUE data sets apportion 
all the catch of these species amongst the individual effort records from a fishing trip; the catch is 
allocated amongst the individual efforts records with estimated catches of the species or amongst all 
effort records, if there are no estimated catches reported. This may result in the magnitude of the 
observed catches being inflated through the catch-based allocation process or the generation of 
additional small catch records (creating false positive catch records). Thus, the data processing 
methodology may introduce additional biases in the catch observations included in the CPUE data sets. 
The simulation modelling approach provided the framework to evaluate the capability of various 
commonly used CPUE standardisation approaches to adjust for these potential sources of bias. 

The simulated data sets do not fully accommodate the degree of complexity associated with the 
distributions of individual species and the overlaying complexity of the distribution of fishing effort 
and the associated variations in catchability. A limited range of assumptions were applied to the 
derivation of the individual species distributions to simplify interpretation and to ensure the conclusions 
of the study were robust to a reasonable range of assumptions. 

The key conclusions of the simulation study are as follow. 

• Positive catch only models (lognormal, Gamma and Weibull) yielded biased estimates of trends in 
relative abundance for all species, with the exception of those species that were ubiquitous and 
occurred in almost all (more than 95%) of the CPUE records. In all other cases, the positive catch 
CPUE indices under-estimated the scale of the variation in species abundance (hyper-stability) and 
this was most pronounced for species of intermediate abundance (second tier). 

• The inclusion of the binomial component in the combined delta-lognormal, delta-Gamma and 
delta-Weibull CPUE models generally compensated for the bias in the positive catch component 
of the CPUE models, particularly for the main species in the total catches. The combined CPUE 
indices closely approximated the trend in the species abundance for the five most abundant species; 
i.e., the species that were most regularly reported (either by trawl or day). 

• For the lower tier (less abundant) species, the delta-Gamma and delta-Weibull models yielded 
CPUE indices that were less biased than the delta-lognormal model. 

• The performance of the delta-lognormal models was more sensitive to the underlying distributional 
assumptions of the species (species occurrence and variability). The performance of the delta-
lognormal models deteriorated with the increasing contrast in the distribution of a species, 
corresponding to an increasing proportion of zero-catch records being included in the simulated 
data set. In general, the delta-lognormal CPUE indices tended to over-estimate the extent of the 
trends in relative abundance for those species with at least 50–60% of the data records comprising 
zero catches (i.e. the CPUE indices exaggerated the increasing or decreasing trends in species 
abundance). 

• Overall, the delta-Weibull, delta-Gamma and negative binomial CPUE models were relatively 
insensitive to distributional assumptions of the simulated data and performed well even for data 
sets with a high proportion of zero-catch records. The improvement of the performance of these 
two models, relative to the delta-lognormal CPUE model, is presumably related to the greater 
flexibility of the Weibull and Gamma model components due to the estimation of the additional 
shape parameters for these distributions. 

• While these “two-stage” models performed well for the range of species, in terms of accurately 
estimating the abundance trends, an examination of the model diagnostics (QQplots, residual plots, 
etc.) indicated that the positive catch components of these models may under-estimate the extent 
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of variation in catches. Therefore, while the model diagnostics may indicate a deficiency in the 
overall performance of the CPUE model, the diagnostics do not provide a strong basis for deciding 
whether or not to accept or reject the resulting CPUE indices. 

• The performance of the negative binomial CPUE model was similar to the performance to the 
delta-Weibull and delta-Gamma CPUE models, in terms determining the point estimate of the 
annual indices. However, the negative binomial models did not reliably represent the distribution 
of the simulated data, particularly the proportion of zero catches in the data sets. Thus, the 
deficiencies in the diagnostics from the negative binomial CPUE models were considerably greater 
than from the components of the ‘two-stage” models. The modelling results indicate that the 
structure of CPUE data do not conform to a negative binomial distribution and, consequentially, 
the negative binomial CPUE models were not considered appropriate for statistical inference and 
are unlikely to provide reliable estimates of uncertainty associated with the annual indices. Initial 
investigations of the application of Zero-Inflated negative binomial models did not reveal an 
appreciable improvement in model performance relative to the negative binomial models. Changes 
in species catch reporting have the potential to introduce a significant bias in the positive catch 
component of the CPUE indices for the lower tier (less abundant) species. The influence of changes 
in reporting was considerably lower for the “two-stage” combined models (delta-lognormal, delta-
Gamma and delta-Weibull), although the delta-Gamma and delta-Weibull CPUE models were 
considerably less sensitive to changes in reporting behaviour than the delta-lognormal models. 

• The concentration of fishing effort in areas of highest species abundance is likely to result in a 
degree of hyper-stability of the CPUE indices derived for the key species of interest. The extent of 
the hyper-stability of the CPUE indices will be related to the underlying species distribution and 
the movement rates of the species. There is potential to reduce these effects by incorporating 
spatially-structured approaches in the derivation of the CPUE indices (Campbell 2004, 2015, 
Thorson 2015). 

• The conclusions of this study are relevant to both individual trawl observations and aggregated 
daily catch and effort data (trawl or day format), although the variation in the results was 
considerably more pronounced for the trawl based data set. The aggregation of data by fishing day 
reduced the variability in the data set and, hence, reduced the magnitude of the bias introduced in 
the simulated CPUE indices. 

There is considerable scope to extend the current simulation approach to more realistically represent 
the spatial distributions of species assemblages, relative to habitat preferences, within specific fishery 
areas as informed by spatially resolved data from trawl surveys and/or fishery catch and effort data. 
Similarly, fisheries data could be applied to formulate alternative assumptions for the distribution of 
fishing effort relative to the abundance of individual species. 

Conceptually, the negative binomial and ZipNB modelling approaches are appealing as they have the 
potential to more directly model the proportion of zero catches. However, this study suggests that these 
methods may not be as capable of reflecting the distributional structure of the underlying data as well 
as the delta methods. This may relate, in part, to the structure of the data, specifically the generation of 
false zero catches through the species reporting process and/or the generation of false positive catches 
via the allocation of small landed catches amongst multiple effort records (catch allocation process).  

Extension of the simulation studies should include further refinement of the consideration of alternative 
CPUE modelling approaches and identify the key criteria for determining the suitability of catch and 
effort data for the derivation of reliable CPUE indices. Such an analysis may also enable the 
quantification of the likely extent of the potential bias in CPUE indices, which may be informative in 
the treatment of these indices; for example, the inclusion of CPUE indices within an assessment model 
with associated priors related to the link between CPUE indices and abundance. 

5. RECOMMENDATIONS 
A key purpose of this study was to provide some guidance for the analysis of catch and effort data for 
the derivation of CPUE analyses. The study is most relevant to data sets collected from inshore trawl 
fisheries under the reporting framework in existence over the last few decades. However, the results of 
the study are also likely to be applicable in a wider context.  
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For trawl event-based catch and effort data, positive catch models (e.g. lognormal, Weibull, Gamma) 
yield biased (hyper-stable) CPUE indices and should be disregarded, except for species with catches 
recorded in almost all (more than 95%) relevant fishing effort records. In other cases, it is recommended 
that combined CPUE models are used. Two-stage delta-lognormal, delta-Gamma and delta-Weibull 
CPUE models are appropriate for those species that are caught with moderate frequency (i.e. 50–95% 
of records). However, for less frequently reported species (catches recorded for less than about 40–50% 
of data records) delta-Gamma and delta-Weibull models are more appropriate than delta-lognormal 
models. 

For the most ubiquitous species, the performance of the combined CPUE models may be compromised 
by the poor performance of the binomial model component. It is therefore recommended that combined 
models are not applied to derive CPUE indices for species that are recorded in more than 95% of the 
records from each year of the time series. Instead, positive catch models (Gamma, Weibull or 
lognormal) should be applied. 

For the less abundant species, the relatively poor performance of the delta-lognormal models was 
related to the proportion of positive catch records that were generated from the effort based allocation 
of catches. The effort based allocation approach generates multiple small, notional catches (including 
false positive catches). The performance of the delta-lognormal models deteriorated when these 
notional catches represented at least 20% of the positive catches in the CPUE data set. While the delta-
Gamma and delta-Weibull models performed well for these lower tier species, it is recommended that 
CPUE indices should not be derived for data sets that incorporate a considerable proportion (more than 
20–30%) of positive catch records generated from the effort based allocation. 

For daily aggregated catch and effort data, combined delta-lognormal, delta-Weibull and delta-Gamma 
models are recommended with the latter model achieving a higher level of performance over the range 
of species (regardless of prevalence). 

Further simulation-based analyses are recommended to investigate the influence of other potential 
sources of bias in the derivation of CPUE indices, specifically the spatial structure of catch and effort 
data, changes in fleet configuration (including criteria for defining a core fleet) and changes in fishing 
efficiency. The current study could also be extended to further investigate the implications of changes 
in the catch and effort regime, particularly the impending changes associated with the introduction of 
electronic reporting (ERS), including changes to the reporting of individual species catches. 

Further consideration is required to formulate a set of model diagnostics and/or performance criteria 
that are likely to be indicative of relative performance of the CPUE indices. These performance criteria 
could be informed by simulation testing across a wide range of scenarios encompassing assumptions 
related to the distribution of the species of interest and the associated fishing activity. 
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APPENDIX 1 
Table A1: Average correlation coefficients for the CPUE indices derived for each species and model option 

for the trawl based data sets comparing different species distributional assumptions (Scenarios). 
Species Lognorm Binom DeltaLog

n 
Gamma DeltaGa

mma 
Weibull DeltaWei

bull 
Tweedie NegBin 

Scenario 1 

1 0.976 0.835 0.993 0.976 0.996 0.960 0.991 0.993 0.997 
2 0.947 0.832 0.991 0.944 0.995 0.917 0.989 0.993 0.996 
3 0.920 0.867 0.992 0.911 0.996 0.881 0.990 0.993 0.996 
4 0.870 0.842 0.991 0.845 0.995 0.796 0.988 0.992 0.995 
5 0.848 0.796 0.987 0.800 0.994 0.735 0.989 0.991 0.994 
6 0.868 0.709 0.984 0.807 0.993 0.745 0.987 0.988 0.993 
7 0.887 0.600 0.980 0.826 0.993 0.765 0.986 0.989 0.993 
8 0.924 0.371 0.965 0.880 0.991 0.844 0.985 0.984 0.990 
9 0.927 0.017 0.951 0.893 0.987 0.873 0.985 0.981 0.988 

          
Scenario 2 

1 0.886 0.874 0.991 0.893 0.995 0.871 0.986 0.990 0.993 
2 0.831 0.884 0.989 0.836 0.994 0.808 0.985 0.989 0.992 
3 0.742 0.862 0.987 0.726 0.991 0.692 0.981 0.984 0.987 
4 0.740 0.861 0.983 0.713 0.991 0.669 0.980 0.982 0.986 
5 0.693 0.843 0.974 0.617 0.987 0.553 0.975 0.977 0.980 
6 0.649 0.809 0.963 0.545 0.981 0.483 0.968 0.972 0.975 
7 0.648 0.765 0.943 0.559 0.977 0.491 0.963 0.966 0.968 
8 0.639 0.699 0.929 0.567 0.973 0.513 0.962 0.958 0.961 
9 0.568 0.615 0.903 0.535 0.966 0.507 0.957 0.951 0.953 

          
Scenario 3 

1 0.893 0.779 0.941 0.937 0.985 0.928 0.982 0.979 0.986 
2 0.855 0.806 0.942 0.905 0.985 0.893 0.982 0.979 0.985 
3 0.826 0.836 0.944 0.870 0.985 0.854 0.981 0.976 0.986 
4 0.798 0.832 0.941 0.820 0.984 0.795 0.979 0.976 0.984 
5 0.764 0.820 0.931 0.774 0.980 0.750 0.976 0.972 0.981 
6 0.755 0.822 0.933 0.745 0.982 0.719 0.977 0.974 0.982 
7 0.810 0.726 0.923 0.795 0.978 0.775 0.974 0.964 0.978 
8 0.853 0.571 0.912 0.858 0.975 0.851 0.974 0.961 0.975 
9 0.855 0.401 0.904 0.880 0.974 0.876 0.973 0.961 0.974 

          
Scenario 4 

1 0.724 0.844 0.912 0.852 0.980 0.850 0.979 0.970 0.980 
2 0.663 0.863 0.905 0.798 0.978 0.795 0.977 0.969 0.978 
3 0.613 0.847 0.908 0.720 0.976 0.716 0.974 0.963 0.976 
4 0.541 0.838 0.892 0.640 0.973 0.636 0.972 0.960 0.973 
5 0.532 0.829 0.886 0.557 0.968 0.552 0.967 0.950 0.968 
6 0.536 0.804 0.853 0.531 0.959 0.525 0.958 0.942 0.959 
7 0.545 0.757 0.839 0.524 0.953 0.523 0.952 0.930 0.952 
8 0.520 0.736 0.824 0.509 0.948 0.513 0.948 0.925 0.947 
9 0.483 0.636 0.774 0.487 0.930 0.492 0.927 0.910 0.930 
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Table A2: Average slope parameters for the CPUE indices derived for each species and model option for 
the trawl based data sets comparing different species distributional assumptions (Scenarios). 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.729 0.323 1.040 0.732 1.046 0.735 1.050 0.846 0.999 
2 0.641 0.435 1.062 0.632 1.056 0.622 1.048 0.866 1.002 
3 0.564 0.521 1.072 0.545 1.057 0.533 1.049 0.828 0.999 
4 0.539 0.550 1.086 0.495 1.048 0.466 1.023 0.845 1.002 
5 0.578 0.538 1.109 0.504 1.042 0.455 0.997 0.894 1.009 
6 0.690 0.430 1.124 0.581 1.019 0.513 0.953 0.818 0.999 
7 0.817 0.352 1.184 0.642 1.010 0.563 0.929 0.876 1.003 
8 0.999 0.178 1.201 0.799 0.998 0.738 0.934 0.872 0.994 
9 1.235 -0.011 1.272 0.971 1.002 0.936 0.965 0.863 1.000 

          
Scenario 2 

1 0.527 0.484 1.007 0.525 1.006 0.526 1.008 0.809 1.001 
2 0.451 0.549 1.008 0.444 1.003 0.441 1.000 0.849 0.998 
3 0.402 0.617 1.017 0.383 1.003 0.382 1.004 0.783 0.998 
4 0.408 0.631 1.041 0.370 1.008 0.359 0.999 0.765 1.000 
5 0.422 0.672 1.088 0.332 1.008 0.306 0.983 0.837 1.004 
6 0.462 0.673 1.134 0.322 1.003 0.282 0.964 0.828 1.005 
7 0.561 0.622 1.184 0.367 0.994 0.312 0.939 0.806 0.995 
8 0.672 0.567 1.269 0.420 1.010 0.354 0.942 0.845 1.007 
9 0.675 0.518 1.241 0.443 0.993 0.392 0.938 0.828 0.988 

          
Scenario 3 

1 0.654 0.328 0.969 0.715 1.028 0.723 1.036 0.879 1.001 
2 0.577 0.400 0.978 0.625 1.029 0.634 1.037 0.817 0.998 
3 0.548 0.475 1.015 0.574 1.043 0.582 1.051 0.850 1.003 
4 0.515 0.517 1.026 0.514 1.031 0.517 1.035 0.824 0.999 
5 0.531 0.533 1.050 0.493 1.023 0.495 1.027 0.844 1.002 
6 0.558 0.546 1.092 0.470 1.012 0.466 1.009 0.873 0.998 
7 0.752 0.415 1.166 0.577 0.995 0.569 0.987 0.827 0.993 
8 0.981 0.276 1.269 0.721 1.007 0.717 1.003 0.819 1.007 
9 1.120 0.166 1.331 0.784 0.981 0.796 0.995 0.828 0.991 

          
Scenario 4 

1 0.521 0.458 0.988 0.537 1.004 0.538 1.005 0.822 1.001 
2 0.441 0.541 0.984 0.466 1.009 0.468 1.011 0.845 1.007 
3 0.426 0.586 1.014 0.422 1.013 0.423 1.014 0.834 1.011 
4 0.381 0.628 1.010 0.360 0.994 0.361 0.995 0.877 0.993 
5 0.398 0.673 1.067 0.322 1.003 0.321 1.002 0.873 1.001 
6 0.450 0.657 1.103 0.323 0.985 0.322 0.984 0.844 0.988 
7 0.576 0.636 1.204 0.367 1.004 0.368 1.004 0.814 1.005 
8 0.617 0.614 1.265 0.371 1.005 0.379 1.014 0.890 1.009 
9 0.693 0.537 1.288 0.414 0.984 0.430 1.003 0.848 0.987 
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Table A3: Average correlation coefficients for the CPUE indices derived for each species for comparative 
model options for the trawl based data sets comparing different distributions of fishing effort. 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.976 0.835 0.993 0.976 0.996 0.960 0.991 0.993 0.997 
2 0.947 0.832 0.991 0.944 0.995 0.917 0.989 0.993 0.996 
3 0.920 0.867 0.992 0.911 0.996 0.881 0.990 0.993 0.996 
4 0.870 0.842 0.991 0.845 0.995 0.796 0.988 0.992 0.995 
5 0.848 0.796 0.987 0.800 0.994 0.735 0.989 0.991 0.994 
6 0.868 0.709 0.984 0.807 0.993 0.745 0.987 0.988 0.993 
7 0.887 0.600 0.980 0.826 0.993 0.765 0.986 0.989 0.993 
8 0.924 0.371 0.965 0.880 0.991 0.844 0.985 0.984 0.990 
9 0.927 0.017 0.951 0.893 0.987 0.873 0.985 0.981 0.988 

          
Trawl Biomass Species1 

1 0.976 0.787 0.986 0.942 0.964 0.862 0.905 0.960 0.963 
2 0.934 0.809 0.979 0.928 0.982 0.899 0.974 0.979 0.983 
3 0.904 0.817 0.979 0.893 0.983 0.861 0.975 0.979 0.983 
4 0.852 0.811 0.976 0.819 0.981 0.760 0.973 0.976 0.981 
5 0.817 0.803 0.972 0.761 0.975 0.695 0.966 0.971 0.975 
6 0.829 0.711 0.954 0.765 0.966 0.689 0.959 0.962 0.966 
7 0.872 0.511 0.942 0.814 0.962 0.756 0.953 0.955 0.962 
8 0.896 0.284 0.935 0.846 0.954 0.815 0.948 0.949 0.954 
9 0.882 0.006 0.903 0.846 0.939 0.828 0.938 0.932 0.940 

          
Trawl Biomass All Species 

1 0.980 0.837 0.995 0.971 0.994 0.935 0.978 0.991 0.994 
2 0.954 0.859 0.993 0.945 0.993 0.904 0.978 0.990 0.993 
3 0.909 0.834 0.990 0.893 0.992 0.849 0.980 0.988 0.992 
4 0.889 0.817 0.990 0.866 0.992 0.825 0.983 0.988 0.992 
5 0.837 0.776 0.984 0.777 0.990 0.699 0.978 0.984 0.990 
6 0.894 0.682 0.981 0.843 0.990 0.782 0.981 0.984 0.990 
7 0.907 0.583 0.974 0.846 0.987 0.781 0.979 0.982 0.987 
8 0.919 0.289 0.958 0.882 0.983 0.854 0.976 0.977 0.983 
9 0.932 0.017 0.950 0.893 0.977 0.871 0.974 0.971 0.978 
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Table A4: Average slope for the CPUE indices derived for each species and comparable model options for 
the Trawl based data sets comparing different distributions of fishing effort. 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.729 0.323 1.040 0.732 1.046 0.735 1.050 0.846 0.999 
2 0.641 0.435 1.062 0.632 1.056 0.622 1.048 0.866 1.002 
3 0.564 0.521 1.072 0.545 1.057 0.533 1.049 0.828 0.999 
4 0.539 0.550 1.086 0.495 1.048 0.466 1.023 0.845 1.002 
5 0.578 0.538 1.109 0.504 1.042 0.455 0.997 0.894 1.009 
6 0.690 0.430 1.124 0.581 1.019 0.513 0.953 0.818 0.999 
7 0.817 0.352 1.184 0.642 1.010 0.563 0.929 0.876 1.003 
8 0.999 0.178 1.201 0.799 0.998 0.738 0.934 0.872 0.994 
9 1.235 -0.011 1.272 0.971 1.002 0.936 0.965 0.863 1.000 

          
Trawl Biomass Species1 

1 0.767 0.169 0.931 0.767 0.931 0.763 0.927 0.781 0.901 
2 0.653 0.421 1.072 0.643 1.064 0.634 1.058 0.836 1.005 
3 0.595 0.490 1.074 0.576 1.060 0.565 1.051 0.825 1.005 
4 0.539 0.532 1.072 0.496 1.034 0.467 1.009 0.874 0.998 
5 0.562 0.557 1.113 0.484 1.041 0.435 0.996 0.851 1.006 
6 0.654 0.479 1.131 0.541 1.022 0.474 0.957 0.821 1.004 
7 0.849 0.293 1.158 0.699 1.007 0.634 0.940 0.817 1.000 
8 1.012 0.145 1.193 0.827 1.002 0.775 0.948 0.834 0.997 
9 1.221 -0.026 1.237 0.991 1.002 0.964 0.974 0.855 1.001 

          
Trawl Biomass All Species 

1 0.747 0.339 1.071 0.752 1.078 0.756 1.083 0.923 1.028 
2 0.643 0.436 1.066 0.647 1.074 0.651 1.080 0.908 1.020 
3 0.588 0.487 1.072 0.575 1.061 0.566 1.054 0.804 1.008 
4 0.600 0.483 1.083 0.564 1.052 0.540 1.032 0.817 1.000 
5 0.571 0.512 1.073 0.510 1.020 0.470 0.984 0.773 0.989 
6 0.713 0.382 1.099 0.622 1.013 0.564 0.957 0.810 0.993 
7 0.820 0.323 1.153 0.670 1.004 0.597 0.930 0.836 0.995 
8 1.033 0.130 1.197 0.837 0.996 0.784 0.940 0.864 0.992 
9 1.188 -0.011 1.216 0.972 0.995 0.944 0.966 0.837 0.992 
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Table A5: Average correlation coefficients for the CPUE indices derived for each species and model option 
for the Day based data sets comparing different species distributional assumptions (Scenarios). 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.992 0.584 0.988 0.991 0.989 0.977 0.983 0.993 0.997 
2 0.986 0.628 0.995 0.982 0.997 0.957 0.990 0.993 0.997 
3 0.977 0.658 0.990 0.968 0.992 0.937 0.987 0.993 0.997 
4 0.970 0.655 0.993 0.957 0.996 0.916 0.989 0.992 0.996 
5 0.977 0.478 0.992 0.970 0.995 0.947 0.990 0.991 0.995 
6 0.980 0.252 0.990 0.973 0.994 0.955 0.989 0.988 0.994 
7 0.983 -0.119 0.988 0.978 0.993 0.965 0.988 0.989 0.993 
8 0.980 -0.190 0.982 0.976 0.991 0.963 0.984 0.984 0.991 
9 0.978 -0.342 0.971 0.974 0.987 0.960 0.981 0.981 0.988 

          
Scenario 2 

1 0.986 0.821 0.993 0.984 0.995 0.967 0.990 0.990 0.995 
2 0.978 0.843 0.991 0.973 0.993 0.952 0.989 0.989 0.994 
3 0.971 0.819 0.987 0.960 0.991 0.932 0.986 0.984 0.991 
4 0.972 0.748 0.985 0.964 0.991 0.942 0.987 0.982 0.991 
5 0.964 0.647 0.977 0.954 0.986 0.932 0.982 0.977 0.987 
6 0.956 0.504 0.969 0.947 0.981 0.929 0.976 0.972 0.981 
7 0.940 0.359 0.960 0.930 0.977 0.914 0.973 0.966 0.977 
8 0.918 0.258 0.953 0.909 0.972 0.894 0.970 0.958 0.973 
9 0.874 0.305 0.941 0.872 0.965 0.861 0.963 0.951 0.966 

          
Scenario 3 

1 0.959 0.705 0.968 0.963 0.985 0.921 0.965 0.979 0.986 
2 0.956 0.734 0.967 0.959 0.985 0.914 0.968 0.979 0.985 
3 0.952 0.648 0.969 0.948 0.985 0.899 0.966 0.976 0.986 
4 0.945 0.625 0.965 0.943 0.984 0.893 0.963 0.976 0.984 
5 0.942 0.530 0.956 0.949 0.981 0.912 0.963 0.972 0.981 
6 0.948 0.195 0.956 0.956 0.982 0.936 0.970 0.974 0.982 
7 0.947 -0.077 0.948 0.961 0.978 0.948 0.968 0.964 0.978 
8 0.940 -0.320 0.938 0.958 0.975 0.946 0.967 0.961 0.975 
9 0.936 -0.386 0.932 0.959 0.973 0.951 0.967 0.961 0.974 

          
Scenario 4 

1 0.942 0.805 0.953 0.952 0.976 0.912 0.962 0.970 0.980 
2 0.927 0.828 0.952 0.935 0.978 0.894 0.964 0.969 0.978 
3 0.929 0.786 0.952 0.923 0.976 0.878 0.959 0.963 0.976 
4 0.916 0.750 0.935 0.927 0.973 0.893 0.963 0.960 0.973 
5 0.912 0.649 0.926 0.929 0.968 0.912 0.963 0.950 0.968 
6 0.878 0.524 0.895 0.919 0.959 0.912 0.956 0.942 0.959 
7 0.852 0.356 0.875 0.908 0.952 0.907 0.952 0.930 0.952 
8 0.821 0.312 0.864 0.881 0.948 0.881 0.948 0.925 0.948 
9 0.756 0.259 0.825 0.827 0.929 0.825 0.927 0.910 0.930 
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Table A6: Average slope parameters for the CPUE indices derived for each species and model option for 
the Day based data sets comparing different species distributional assumptions (Scenarios). 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.903 0.394 1.260 0.883 1.243 0.848 1.212 0.846 0.999 
2 0.854 0.211 1.054 0.815 1.018 0.753 0.959 0.866 1.003 
3 0.830 0.312 1.124 0.779 1.076 0.704 1.006 0.828 1.000 
4 0.832 0.243 1.077 0.766 1.012 0.682 0.929 0.845 1.003 
5 0.948 0.135 1.096 0.867 1.014 0.782 0.927 0.894 1.010 
6 1.031 0.034 1.086 0.951 1.004 0.883 0.933 0.818 1.001 
7 1.142 -0.059 1.106 1.039 1.002 0.972 0.933 0.876 1.002 
8 1.194 -0.118 1.084 1.103 0.994 1.046 0.937 0.872 0.995 
9 1.228 -0.155 1.066 1.154 0.993 1.110 0.950 0.863 1.001 

          
Scenario 2 

1 0.858 0.238 1.085 0.788 1.017 0.714 0.945 0.809 1.001 
2 0.808 0.285 1.090 0.727 1.011 0.651 0.937 0.849 0.999 
3 0.827 0.292 1.111 0.720 1.009 0.641 0.932 0.783 0.997 
4 0.891 0.237 1.128 0.772 1.011 0.694 0.934 0.765 1.003 
5 0.969 0.191 1.167 0.809 1.008 0.725 0.923 0.837 1.004 
6 1.023 0.143 1.171 0.856 1.004 0.780 0.929 0.828 1.001 
7 1.031 0.119 1.158 0.874 1.000 0.819 0.945 0.806 0.995 
8 1.045 0.100 1.153 0.910 1.018 0.871 0.979 0.845 1.011 
9 0.918 0.151 1.074 0.853 1.010 0.832 0.989 0.828 0.997 

          
Scenario 3 

1 0.811 0.215 1.009 0.814 1.015 0.824 1.025 0.879 1.001 
2 0.799 0.239 1.036 0.774 1.013 0.765 1.006 0.817 0.998 
3 0.833 0.223 1.053 0.790 1.012 0.775 0.997 0.850 1.003 
4 0.880 0.204 1.087 0.796 1.005 0.758 0.968 0.824 0.999 
5 0.970 0.151 1.132 0.843 1.004 0.795 0.955 0.844 1.002 
6 1.102 0.047 1.176 0.929 0.998 0.870 0.937 0.873 0.997 
7 1.200 -0.039 1.181 1.015 0.992 0.973 0.949 0.827 0.992 
8 1.273 -0.102 1.183 1.097 1.007 1.069 0.978 0.819 1.006 
9 1.295 -0.121 1.179 1.103 0.988 1.079 0.964 0.828 0.991 

          
Scenario 4 

1 0.830 0.325 1.143 0.758 1.074 0.737 1.055 0.822 1.001 
2 0.816 0.296 1.106 0.725 1.018 0.704 0.998 0.845 1.007 
3 0.881 0.285 1.159 0.734 1.018 0.702 0.986 0.834 1.011 
4 0.941 0.249 1.191 0.744 0.996 0.709 0.962 0.877 0.993 
5 1.075 0.190 1.268 0.810 1.005 0.778 0.972 0.873 1.002 
6 1.145 0.137 1.291 0.845 0.989 0.825 0.967 0.844 0.987 
7 1.212 0.103 1.319 0.901 1.008 0.899 1.006 0.814 1.006 
8 1.179 0.112 1.298 0.895 1.012 0.913 1.031 0.890 1.008 
9 1.100 0.121 1.227 0.861 0.991 0.890 1.019 0.848 0.986 
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Table A7: Average correlation coefficients for the CPUE indices derived for each species for comparative 
model options for the Day based data sets comparing different distributions of fishing effort. 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.992 0.584 0.988 0.991 0.989 0.977 0.983 0.993 0.997 
2 0.986 0.628 0.995 0.982 0.997 0.957 0.990 0.993 0.997 
3 0.977 0.658 0.990 0.968 0.992 0.937 0.987 0.993 0.997 
4 0.970 0.655 0.993 0.957 0.996 0.916 0.989 0.992 0.996 
5 0.977 0.478 0.992 0.970 0.995 0.947 0.990 0.991 0.995 
6 0.980 0.252 0.990 0.973 0.994 0.955 0.989 0.988 0.994 
7 0.983 -0.119 0.988 0.978 0.993 0.965 0.988 0.989 0.993 
8 0.980 -0.190 0.982 0.976 0.991 0.963 0.984 0.984 0.991 
9 0.978 -0.342 0.971 0.974 0.987 0.960 0.981 0.981 0.988 

          
Trawl Biomass Species1 

1 0.971 0.607 0.922 0.954 0.911 0.894 0.873 0.960 0.963 
2 0.972 0.533 0.981 0.967 0.982 0.942 0.975 0.979 0.984 
3 0.967 0.583 0.982 0.959 0.983 0.928 0.977 0.979 0.983 
4 0.952 0.643 0.980 0.937 0.981 0.895 0.976 0.976 0.981 
5 0.954 0.499 0.974 0.941 0.976 0.911 0.969 0.971 0.976 
6 0.953 0.193 0.962 0.944 0.967 0.925 0.962 0.962 0.967 
7 0.953 -0.054 0.957 0.948 0.962 0.933 0.955 0.955 0.963 
8 0.947 -0.215 0.947 0.942 0.954 0.927 0.946 0.949 0.954 
9 0.932 -0.286 0.929 0.926 0.940 0.911 0.933 0.932 0.940 

          
Trawl Biomass All Species 

1 0.992 0.613 0.974 0.987 0.973 0.960 0.958 0.991 0.994 
2 0.984 0.692 0.985 0.976 0.984 0.943 0.971 0.990 0.993 
3 0.977 0.600 0.993 0.965 0.992 0.924 0.982 0.988 0.992 
4 0.977 0.526 0.993 0.966 0.993 0.932 0.985 0.988 0.993 
5 0.969 0.488 0.990 0.953 0.990 0.916 0.980 0.984 0.990 
6 0.979 0.260 0.988 0.970 0.990 0.949 0.981 0.984 0.990 
7 0.979 -0.081 0.984 0.973 0.987 0.957 0.979 0.982 0.987 
8 0.974 -0.249 0.977 0.967 0.983 0.951 0.973 0.977 0.983 
9 0.972 -0.273 0.971 0.963 0.978 0.943 0.966 0.971 0.978 
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Table A8: Average slope for the CPUE indices derived for each species and comparable model options for 
the Day based data sets comparing different distributions of fishing effort. 

Species Lognorm Binom DeltaLog
n 

Gamma DeltaGa
mma 

Weibull DeltaWei
bull 

Tweedie NegBin 

Scenario 1 

1 0.903 0.394 1.260 0.883 1.243 0.848 1.212 0.846 0.999 
2 0.854 0.211 1.054 0.815 1.018 0.753 0.959 0.866 1.003 
3 0.830 0.312 1.124 0.779 1.076 0.704 1.006 0.828 1.000 
4 0.832 0.243 1.077 0.766 1.012 0.682 0.929 0.845 1.003 
5 0.948 0.135 1.096 0.867 1.014 0.782 0.927 0.894 1.010 
6 1.031 0.034 1.086 0.951 1.004 0.883 0.933 0.818 1.001 
7 1.142 -0.059 1.106 1.039 1.002 0.972 0.933 0.876 1.002 
8 1.194 -0.118 1.084 1.103 0.994 1.046 0.937 0.872 0.995 
9 1.228 -0.155 1.066 1.154 0.993 1.110 0.950 0.863 1.001 

          
Trawl Biomass Species1 

1 0.848 0.838 1.620 0.838 1.612 0.814 1.590 0.781 0.901 
2 0.877 0.243 1.108 0.844 1.076 0.790 1.025 0.836 1.004 
3 0.855 0.215 1.061 0.807 1.015 0.739 0.952 0.825 1.004 
4 0.840 0.232 1.077 0.769 1.006 0.684 0.922 0.874 0.999 
5 0.941 0.145 1.095 0.856 1.009 0.764 0.917 0.851 1.005 
6 1.043 0.032 1.099 0.953 1.007 0.877 0.928 0.821 1.005 
7 1.137 -0.068 1.083 1.056 1.002 0.999 0.945 0.817 1.001 
8 1.180 -0.110 1.085 1.089 0.995 1.034 0.939 0.834 0.998 
9 1.205 -0.125 1.081 1.118 0.995 1.067 0.945 0.855 1.001 

          
Trawl Biomass All Species 

1 0.922 0.515 1.395 0.902 1.376 0.863 1.340 0.923 1.028 
2 0.850 0.317 1.146 0.818 1.117 0.765 1.068 0.908 1.020 
3 0.840 0.229 1.065 0.794 1.021 0.730 0.960 0.804 1.008 
4 0.886 0.167 1.056 0.839 1.009 0.777 0.948 0.817 1.001 
5 0.913 0.144 1.069 0.838 0.994 0.756 0.910 0.773 0.990 
6 1.010 0.037 1.064 0.945 0.998 0.893 0.945 0.810 0.994 
7 1.118 -0.066 1.077 1.038 0.996 0.981 0.938 0.836 0.995 
8 1.187 -0.125 1.073 1.100 0.987 1.049 0.936 0.864 0.992 
9 1.181 -0.126 1.058 1.106 0.984 1.062 0.941 0.837 0.992 
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APPENDIX 2 

 

Figure A1: An example of a comparison the annual observed and predicted proportion of positive catches 
from Binomial CPUE models by species from one simulated data set (trawl data configured for 
Scenario 1; i.e., species occurrence function A (Figure 1), variation in species distribution SD 0.5, 
trawl distribution random, reporting module included). 
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Figure A2: An example of a comparison of density plots of observed (black line) and predicted (red line) 
positive (non-zero) catches from Lognormal CPUE models by species from one simulated data set 
(trawl data configured for Scenario 1; i.e., species occurrence function A (Figure 1), variation in 
species distribution SD 0.5, trawl distribution random, reporting module included). 
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Figure A3: An example of a comparison of density plots of observed (black line) and predicted (red line) 
positive (non-zero) catches from Weibull CPUE models by species from one simulated data set 
(trawl data configured for Scenario 1; i.e., species occurrence function A (Figure 1), variation in 
species distribution SD 0.5, trawl distribution random, reporting module included). 
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Figure A4: An example of a comparison of density plots of observed (black line) and predicted (red line) 
positive (non-zero) catches from Gamma CPUE models by species from one simulated data set 
(trawl data configured for Scenario 1; i.e., species occurrence function A (Figure 1), variation in 
species distribution SD 0.5, trawl distribution random, reporting module included). 
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