Ministry for Primary Industries

Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2010-11 fishing year, with a summary of all available data sets
New Zealand Fisheries Assessment Report 2012/42
P.L. Horn
D. Hulston
C. Ó Maolagáin

ISSN 1179-5352 (online)
ISBN 978-0-478-40418-0 (online)
October 2012

Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140
Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx
http://fs.fish.govt.nz go to Document library/Research reports

© Crown Copyright - Ministry for Primary Industries

Table of Contents EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
2. METHODS 3
3. RESULTS 4
3.1 Catch sampling 4
3.2 Species proportions 5
3.3 Sex ratios 6
3.4 Catch-at-length 6
3.5 Catch-at-age 8
3.6 Data summaries 11
4. DISCUSSION 15
5. ACKNOWLEDGMENTS 16
6. REFERENCES 16
Appendix A: Fishery stratification 17
Appendix B: Proportions-at-age by species and fishing year 20

EXECUTIVE SUMMARY

Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2012). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2010-11 fishing year, with a summary of all available data sets.

New Zealand Fisheries Assessment Report 2012/42. 22 p.

This report describes the scientific observer sampling programme carried out on trawl landings of jack mackerel (Trachurus novaezelandiae, T. declivis, and T. murphyi) in JMA 7 during the 2010-11 fishing year, and the subsequent estimates of species proportions and sex ratios in the landings, catch-at-length, and catch-at-age for these species.

Each tow in the observer data includes (estimated) total jack mackerel catch and weights by species sampled from the tow. The sampled weights were scaled to give estimated total catch weights by species for the tow. Stratification of the data was required because the observer coverage and catch composition varies with both month and statistical area. Just less than 29% of the 2010-11 landed catch was sampled, and sampling was found to be representative of the landings both temporally and spatially.

For all three species, the scaled length distributions from 2010-11 were generally similar to those from the four previous years. The age-frequency distributions for all species in 2010-11 had mean weighted c.v.s of 23% or less, which more than met the target of 30%. By species, there is clear variation in catch-at-age between years. For T. declivis and T. murphyi the variation is largely a consequence of the progression of year classes with different relative strengths. Year class strength progression can also be postulated for T. novaezelandiae, but it is not as clear and consistent as for the two other species.

Estimated species proportions indicated a predominance of T. declivis at about $65-71 \%$ in the JMA 7 TCEPR catch throughout all statistical areas and the five years of sampling; T. novaezelandiae was consistently represented at $25-28 \%$ and . murphyi at 3% to 8%.

1. INTRODUCTION

Commercial catches of jack mackerel are recorded as an aggregate of the three species (Trachurus declivis, T. murphyi, and T. novaezelandiae) under the general code JMA, so separate catch information for each is unavailable from the jack mackerel quota management areas (Figure 1). Consequently, estimates of proportions of the three Trachurus species in the catch are essential for assessment of their stocks individually. Reliable estimates of species proportions can be used to apportion the aggregated catch histories to provide individual catch histories for each species at least back to when sampling began, which can in turn be used to scale age structures from the various fisheries. Recently the JMA 7 fishery has been primarily a trawl fishery with a small proportion of catches made using purse seine or set net. In earlier years larger proportions of the catch came from purse seine fishing (Taylor \& Julian 2008).

Figure 1: Jack mackerel administrative Fishstocks.

This report provides estimates of relative proportions and catch-at-age for the three Trachurus species in the commercial JMA 7 catch for 2010-11 using observer data. Similar data were presented by Taylor et al. (2011) for 2006-07, 2007-08 and 2008-09, and Horn et al. (2012) for 2009-10. Summaries of the time series of catch-at-age estimates, sex ratios and species proportions for the JMA 7 catch are also presented. This document fulfils the reporting requirements for Objective 6 of Project MID201001B "Routine age determination of hoki and middle depth species from commercial fisheries and trawl surveys", funded by the Ministry for Primary Industries. That objective is "To determine the age and size structure of the commercial catches of jack mackerel (all three species) in the JMA 7 fishery from samples collected at sea by the Observer Programme".

Age monitoring of jack mackerels over time was carried out previously for jack mackerel species in New Zealand by Horn (1993) who tracked strong and weak age classes of T. declivis and T. novaezelandiae through time to provide a qualitative validation for ageing these two species. There was no significant difference in growth between sexes for either species although geographical differences were evident between the Bay of Plenty and the central west coast.

2. METHODS

Catch sampling for length, sex, age, and species composition was carried out by observers primarily working on board large trawl vessels targeting jack mackerels. Sampling was carried out according to instructions developed at NIWA and included in the Scientific Observers Manual. Each tow in the observer dataset includes (estimated) total jack mackerel catch and weights by species sampled from the tow. All observer data on jack mackerels sampled from JMA 7 in the 2010-11 fishing year were extracted for the analyses. As in previous analyses, estimated species proportions (by weight) in each sampled landing were assumed to be the same as the proportions in a randomly selected sample from the catch (Taylor et al. 2011). The observer data were examined for spatial and temporal variability, and this was compared with the spatial and temporal distribution of the entire commercial JMA 7 catch.

Commercial catch data extracted from the Ministry for Primary Industries catch-effort database "warehou" (Extract \#8449) were used in these analyses. The data comprised estimated catch and associated date, position, depth, and method data from all fishing events that recorded catches of jack mackerel from JMA 7 (i.e., QMAs 7, 8, and 9) in 2010-11.

Stratification of the data is required because the observer coverage varies with both month and statistical area, the fishery is not consistent throughout the year, and the species composition varies across area and depth (Taylor et al. 2011). The derivation of the five strata used in this analysis is shown in Appendix A. Each fishing event from the catch-effort dataset and the observer dataset was allocated to one of the five strata.

Proportions of the catch by species were estimated as follows. For each observed tow, the catch weight of each species was estimated based on the species weight proportions of a random sample. Each observed tow was allocated to one of the five strata defined in Appendix A. Within each stratum, the estimated landed weights of each species were summed across all observed tows. Percentages of catch by species were then calculated for each stratum. Total jack mackerel catch by stratum was obtained by summing the reported estimated landing weights of all tows (from the catch-effort dataset) in that stratum. The species percentages derived for that stratum were then applied to the total summed catch to estimate catch by species in that stratum. The estimated catch totals were then summed across strata (by species) to produce total estimated catch weight by species for the fishing year, and, consequently, total species proportions by weight.

Ageing was completed for all three Trachurus species (i.e., T. declivis, T. novaezelandiae, and T. murphyi) caught by trawl in JMA 7 (Statistical Areas 033-048, 801 (Figure 2)) in the 2010-11 fishing year, using data and otoliths collected by observers. For each of the three species, samples of otoliths (for each sex separately) from each 1 cm length class were selected approximately proportionally to their occurrence in the scaled length frequency, with the constraint that the number of otoliths in each length class (where available) was at least one. In addition, otoliths from fish in the extreme right hand tail of the scaled length frequency (constituting about 2% of that length frequency) were oversampled. Target sample sizes were about 550 per species. Sets of five otoliths were embedded in blocks of clear epoxy resin and cured at $50^{\circ} \mathrm{C}$. Once hardened, a $380 \mu \mathrm{~m}$ thin transverse section was cut from each block through the primordia using a high speed saw. The thin section was washed, dried, and embedded under a cover slip on a glass microscopic slide. Thin sections were read with a bright field stereomicroscope at up to $\times 100$ magnification. Zone counts were based on the number of complete opaque zones (i.e., opaque zones with translucent material outside them), which were counted to provide data for age estimates. Otoliths of T. declivis and T. novaezelandiae were read following the validated methods described by Horn (1993) and Lyle et al. (2000). A validated ageing method has not yet been developed for T. murphyi in New Zealand waters. Otoliths from this species were interpreted similarly to those of T. declivis. However, they are notably harder to read, with presumed annual zones often being diffuse, split, or containing considerable microstructure (Taylor et al. 2002).

The age data were used to construct age-length keys (by species and sex) which in turn were used to scale the weighted length composition of the catch up to catch-at-age by sex using the NIWA catch-at-age software (Bull \& Dunn 2002). This software also provides estimates of c.v.s-at-age using a bootstrap procedure. Sex ratios by species were also derived from this process.

Figure 2: Statistical Areas referred to in the text.

3. RESULTS

3.1 Catch sampling

The landings distribution in 2010-11 shows that there is a fishery from October to January concentrated in Statistical Areas 037 and 040-042, followed by a secondary fishery centred around June and concentrated in the same statistical areas as well as Area 036 (Table 1). Because the two fishery peaks were quite widely separated in time it was considered desirable to split the year into two equal parts (i.e., a split between March and April), and use separate age-length keys for each part (to account for the growth of fish, particularly of the younger age classes). In each time period, the data were analysed in the five strata determined by Taylor et al. (2011).

In 2010-11, about 29% of the landed weight was sampled by observers (Table 1). Most of the estimated landings were derived from four Statistical Areas (037, 040-042), and these were all well sampled (Figure 3). Sampling was concentrated in October-January and June (and these months produced relatively high landings), but February and March were under-sampled (Figure 3). However,
it was concluded that sampling of the whole fishery was satisfactory to estimate the overall catch-atage.

Table 1: Jack mackerels - distribution of estimated total catch and sampled landings (t, rounded to the nearest tonne), by month and statistical area (Stat Area), in the 2010-11 fishing year. Values of $\mathbf{0}$ indicate landings from 1 to 499 kg ; blank cells indicate zero landings or samples. \%, percentage of estimated total catch that was sampled by observers, by month and statistical area.

Estimated total catch (t), 2010-11

StatArea												Month	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	All
033-035	25	9	4	2	8	4	2	1	263	814	75	44	1251
036	267	0	1	0		0	0	4	598	40	5	1	917
037	395	3	118	1778	812	922	867	117	219	35	0	2	5269
038	1	2	1	1	1	0	0	1	2	1	0	1	12
039	1	0	0	0		19	232	2	350	1	1	2	608
040	579	143	270	1197	649	282	93	501	725	0	30	13	4483
041	279	1930	4612	416	2	25	2	177	857	4	84	16	8403
042	0	1073	2770	343	0	0			535		0	0	4721
045-047	4	3	7	2	0	4	1	0	155	1	2	1	180
801			10						598				608
All	1551	3164	7794	3740	1474	1256	1197	803	4302	895	198	80	26451

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	All	$\%$
$033-035$								2	146	129	1	3	281	22.3
036	75								128				203	22.1
037	389	1	82	383			280	113	114	1			0	1364
038														
039												1	1	0.9
040	485	58	84	166			13	271	636			14	1728	38.5
041	53	791	562					0	224			17	1647	19.6
042		724	892						211				1828	38.7
$045-047$									31				31	17.9
801									517				517	85.0
All	1002	1575	1621	548			293	387	2007	131	1	36	7600	28.7
$\%$	64.6	49.8	20.8	14.7			24.4	48.1	46.7	14.5	0.5	44.3	28.7	

3.2 Species proportions

An examination of estimated species proportions by fishing year (Table 2) indicates that T. declivis (JMD) was the dominant species during the period examined, accounting for 65 to 71% of landed weight in all years. T. novaezelandiae (JMN) was the second most frequently caught species at 25 to 28%. By contrast, T. murphyi (JMM) was detected at a much lower and quite variable rate of 3 to 8%.

Table 2: Estimated species proportions (by weight) and catch weights by species in JMA 7 since 2006-07. 'Estimated catch' is the sum of all the tow-by-tow estimates of jack mackerel catch. Data from 2006-07 to 2009-10 are from Taylor et al. (2011) and Horn et al. (2012).

	Species proportions (\%)			Estimated catch (t)			Landed catch (t)		
Fishing year	JMD	JMN	JMM	JMD	JMN	JMM	JMD	JMN	JMM
2006-07	69.5	26.8	3.7	21248	8188	1128	22273	8583	1183
2007-08	64.8	27.0	8.2	21033	8763	2671	22064	9193	2802
2008-09	66.4	25.3	8.3	17943	6826	2236	19154	7287	2387
2009-10	65.9	27.6	6.5	19487	8155	1933	20526	8590	2036
2010-11	70.6	26.9	2.5	18679	7123	650	19897	7587	692

Figure 3: Observed landings and landings that were not observed, by Statistical Area and month, in 2010-11.

3.3 Sex ratios

Sex ratios by fishing year since 2006-07 are shown in Table 3. Generally, ratios are around 50% with the largest digression being T. murphyi in 2007-08 with an estimated value for males of 61%. However, some consistent trends are apparent: the T. declivis and T. murphyi catches usually have a higher proportion of males, while the T. novaezelandiae catch is biased towards females.

Table 3: Estimated sex ratios (\%) in the JMA 7 catch by species and fishing year.

Fishing year	JMD		JMN		JMM	
	Males	Females	Males	Females	Males	Females
2006-07	51.6	48.4	49.5	50.5	54.8	45.2
2007-08	51.7	48.3	43.0	57.0	60.7	39.3
2008-09	52.5	47.5	45.7	54.3	56.9	43.1
2009-10	51.5	48.5	49.1	50.9	54.3	45.7
2010-11	46.8	53.2	43.4	56.6	56.9	43.1

3.4 Catch-at-length

The estimated catch-at-length distributions, by species, for trawl-caught jack mackerel from JMA 7 in 2010-11 are plotted in Figure 4. For T. novaezelandiae there are at least three length modes (i.e., 12$13 \mathrm{~cm}, 17-18 \mathrm{~cm}$, and 29 to 32 cm). For T. declivis there is a strong length mode at $41-44 \mathrm{~cm}$, and a secondary mode at about $32-33 \mathrm{~cm}$. The length range of T. murphyi is very narrow, with most fish being from 49 to 53 cm . For all species, there is little between-sex difference in the length distributions.

Figure 4: Estimated catch-at-length distributions, by species and sex, from JMA 7 in 2010-11.

3.5 Catch-at-age

The details of the estimated catch-at-age distributions for trawl-caught jack mackerel from JMA 7 in 2010-11 are presented for T. novaezelandiae in Table 4, T. declivis in Table 5, and T. murphyi in Table 6. The mean weighted c.v.s for T. novaezelandiae (20%), T. declivis (18\%), and T. murphyi (23\%) were all well below the target value of 30%. The estimated distributions are plotted in Figure 5. The catch of T. novaezelandiae is dominated by $1-5$ year old fish, with very few fish older than 11 years. The catch of T. declivis has abundant fish aged $3-10$ years old, with fish to 15 years being moderately common. The catch of T. murphyi is dominated by 15-20 year old fish, with very few fish younger than 13 or older than 24 years.

Table 4: Calculated numbers-at-age, separately by sex, with c.v.s, for Trachurus novaezelandiae caught during commercial trawl operations in JMA 7 during the 2010-11 fishing year. Summary statistics for the sample are also presented.

Age	Male	c.v.	Female	c.v.	Total	c.v.
0	15621	2.006	0	-	15621	2.006
1	1178195	0.381	1019149	0.426	2197344	0.378
2	1225307	0.284	1391187	0.265	2616495	0.249
3	1617139	0.202	1411198	0.224	3028337	0.185
4	1028706	0.191	1795054	0.128	2823760	0.114
5	1008416	0.184	1438412	0.160	2446827	0.124
6	212884	0.436	575690	0.264	788574	0.228
7	414299	0.342	884724	0.224	1299023	0.193
8	418524	0.286	664381	0.249	1082904	0.189
9	685553	0.221	867618	0.193	1553170	0.141
10	536446	0.242	820286	0.209	1356733	0.160
11	500671	0.296	759757	0.217	1260428	0.170
12	187222	0.422	156582	0.533	343803	0.328
13	122642	0.494	159946	0.387	282588	0.316
14	63371	0.775	88833	0.500	152204	0.429
15	29208	0.697	80661	0.446	109869	0.392
16	83369	0.609	59736	0.708	143105	0.451
17	12566	1.160	0	-	12566	1.160
18	0	-	1648	1.712	1648	1.712
No. measured		5950		8183		14133
No. aged		271		338		609
No. of tows sampled		27.8		23.7		199
Mean weighted c.v.					20.3	

Table 5: Calculated numbers-at-age, separately by sex, with c.v.s, for Trachurus declivis caught during commercial trawl operations in JMA 7 during the 2010-11 fishing year. Summary statistics for the sample are also presented.

Age	Male	c.v.	Female	c.v.	Total	c.v.
0	0	-	0	-	0	-
1	123622	0.379	70401	0.356	194023	0.355
2	387807	0.236	436792	0.231	824599	0.191
3	1157690	0.162	1148983	0.161	2306672	0.134
4	1590169	0.150	1162111	0.170	2752281	0.113
5	824531	0.232	1183321	0.180	2007852	0.143
6	956671	0.214	1079149	0.221	2035819	0.153
7	941901	0.244	857240	0.220	1799142	0.169
8	916324	0.238	951558	0.239	1867883	0.175
9	301104	0.372	1180794	0.203	1481898	0.176
10	865243	0.270	719780	0.245	1585021	0.184
11	278554	0.401	471031	0.285	749584	0.230
12	403029	0.344	564979	0.281	968008	0.216
13	244459	0.413	582305	0.290	826764	0.237
14	386627	0.396	625270	0.240	1011898	0.209
15	447838	0.344	92686	0.642	540524	0.295
16	66177	0.761	77724	0.771	143900	0.545
17	8623	1.049	0	-	8623	1.049
18	0	-	42953	1.091	42953	1.091
No. measured		10457		11700		22157
No. aged		323		334		657
No. of tows sampled				22.9		275
Mean weighted c.v.	25.0			17.5		

Table 6: Calculated numbers-at-age, separately by sex, with c.v.s, for Trachurus murphyi caught during commercial trawl operations in JMA 7 during the 2010-11 fishing year. Summary statistics for the sample are also presented.

Age	Male	c.v.	Female	c.v.	Total	c.v.
4	1080	1.146	0	-	1080	1.146
5	0	-	0	-	0	-
6	206	2.163	0	-	206	2.163
7	3028	1.841	0	-	3028	1.841
8	0	-	0	-	0	-
9	1351	0.956	139	2.159	1490	0.873
10	512	1.888	0	-	512	1.888
11	0	-	0	-	0	-
12	0	-	0	-	0	-
13	5673	0.497	5728	0.510	11402	0.363
14	15004	0.307	8638	0.452	23642	0.235
15	35388	0.205	26644	0.235	62032	0.144
16	43114	0.166	32887	0.241	76000	0.130
17	30990	0.218	20048	0.313	51038	0.174
18	17479	0.265	22648	0.271	40127	0.183
19	34239	0.196	16912	0.301	51151	0.155
20	16422	0.282	16272	0.349	32694	0.228
21	5489	0.438	4241	0.620	9730	0.374
22	5146	0.516	4154	0.612	9300	0.392
23	5545	0.481	5096	0.553	10642	0.340
24	8821	0.424	8227	0.426	17048	0.295
25	839	1.099	1290	1.037	2129	0.763
26	4135	0.628	1432	1.111	5567	0.543
27	0	0.000	1290	1.018	1290	1.018
28	890	1.236	2951	0.751	3841	0.630
29	0	-	0	-	0	-
30	1748	1.313	1290	1.068	3038	0.836
No. measured		303		214		517
No. aged		209		132		341
No. of tows sampledMean weighted c.v.						152
		30.6		35.5		23.1

T. novaezelandiae

T. declivis

T. murphyi

Figure 5: Estimated commercial catch-at-age distributions, by species and sex, from JMA 7 in 2010-11.

3.6 Data summaries

Catch-at-length and catch-at-age data from the JMA 7 fishery are now available from five consecutive years since 2006-07. Mean weighted c.v.s for the length and age distributions, by sex and year, are listed for each species in Table 7. The c.v.s for the total age distributions met or exceeded the target of 30\% for all species in all years, except for Trachurus murphyi in 2006-07.

Total (i.e., sexes combined) scaled length and age distributions, by species and fishing year are shown in Figures 6-8. The data used to produce these catch-at-age distributions are listed in Appendix B.

Table 7: Mean weighted c.v.s (mwCV) for catch-at-age and catch-at-length distributions, by species, sex, and fishing year.

Species	Fishing year	Catch-at-age mwCV (\%)			Catch-at-length mwCV (\%)		
		Males	Females	Total	Males	Females	Total
T. declivis	2006-07	31	38	25	12	12	9
	2007-08	26	34	24	13	13	12
	2008-09	34	40	27	11	10	9
	2009-10	25	28	20	13	12	10
	2010-11	25	23	18	12	11	9
T. novaezelandiae	2006-07	26	24	19	17	16	14
	2007-08	27	25	22	17	12	13
	2008-09	39	39	30	14	11	11
	2009-10	32	27	23	16	15	12
	2010-11	28	24	20	20	16	15
T. murphyi	2006-07	41	57	38	37	37	31
	2007-08	34	48	30	17	21	14
	2008-09	35	48	30	20	21	15
	2009-10	35	47	30	27	28	23
	2010-11	31	36	23	28	28	21

Trachurus novaezelandiae

Scaled length-frequencies by fishing year for T. novaezelandiae are shown in Figure 6. There are modes at $28-30 \mathrm{~cm}$ in all distributions. The distributions are all generally similar, except for a dominant second mode at 24 cm in 2009-10. Scaled age-frequencies for T. novaezelandiae, by fishing year, are quite variable between years (Figure 6). However, some possible year class progressions can be postulated. The $1+$ year class is strong in 2007-08, and maintains a relatively high abundance in the subsequent years. The $1+$ year class in 2008-09 may also be relatively strong. Year classes 4,5 , and 6 in 2006-07 also appear to be relatively strong throughout the series, although there are some inconsistencies (e.g., year class 7 in 2009-10 is weak).

Trachurus declivis

Scaled length-frequencies for T. declivis, by fishing year, are often multi-modal (Figure 7). They generally cover similar ranges from about 16 cm to about 50 cm , with a consistent strong mode at 4243 cm . Most variation in abundance occurs with the fish shorter than 37 cm , presumably relating to the relative strengths of juvenile year classes. Scaled age-frequencies for T. declivis, by fishing year, are shown in Figure 7. There is a wide range of ages in the catches, and the distributions are quite variable between years. There is evidence of two relatively strong year classes aged 1 and 2 in 2007-08 that progress to ages 4 and 5 in 2010-11.

Trachurus murphyi

Scaled length-frequencies for T. murphyi, by fishing year, are shown in Figure 8. All the distributions are unimodal, peaking at 49-51 cm, and are generally similar with few fish smaller than 45 cm . Scaled age-frequencies for T. murphyi by fishing year (Figure 8) exhibit a wide range of ages although few fish younger than 10 years are recorded in any year. There is evidence of a relatively strong year class at age 12 in 2006-07 that progresses to age 16 in 2010-11.

Figure 6: Scaled catch-at-length (left panel) and catch-at-age (right panel) proportions for the catch of Trachurus novaezelandiae in fishing years 2006-07 to 2010-11.

Figure 7: Scaled catch-at-length (left panel) and catch-at-age (right panel) proportions for the catch of Trachurus declivis in fishing years 2006-07 to 2010-11.

Figure 8: Scaled catch-at-length (left panel) and catch-at-age (right panel) proportions for the catch of Trachurus murphyi in fishing years 2006-07 to 2010-11.

4. DISCUSSION

Sampling of the jack mackerel trawl fishery in 2010-11 appeared to be generally representative of the fishery, although there were two months (February and March) when landings were moderate but no sampling occurred. Spatially, there was good coverage of catch in the heavily fished Statistical Areas (037, 040-042). Estimates of the 2010-11 catch-at-age for all three jack mackerel species had mean weighted c.v.s over all age classes of 23% or less, well below the target of 30%.

Estimates of species proportions indicate a consistent predominance of T. declivis at around 65-71\% of total catch weight in the five fishing years from which data are available. The percentage of T. novaezelandiae is also consistent temporally at $25-28 \%$. The predominance of T. declivis overall is expected given that this species generally occurs deeper and further offshore than T. novaezelandiae and that most of the vessels targeting jack mackerels are restricted to fishing at least 12 n.miles, and often 25 n.miles, off the coast.

Most of the T. declivis catch in all years comprises adult fish at least 37 cm long. Differences between years in the length distributions occur primarily in the abundance of fish shorter than 37 cm . There is some indication that this is a consequence of the progression of two reasonably strong year classes (aged 2 and 3 in 2008-09).

The mean age of T. murphyi in the catch has steadily increased over the five sampled years. In 200607 , most fish were $10-15$ years old, compared with 15-20 years old in 2010-11. This is indicative of a strong recruitment pulse, comprising several year classes, possibly as a result of immigration from international waters. These year classes are now growing through, with no evidence of any significant new immigration or recruitment through spawning success.

The T. novaezelandiae catch also has a consistent strong adult length mode (at about $28-31 \mathrm{~cm}$) in all sampled years, although in 2009-10 the relative abundance of 2-4 year old fish (i.e., lengths about 2027 cm) outweighs the adult mode. The progression of some relatively strong year classes through the time series can be postulated. However, they are not as clear as progressions apparent in the age distributions for T. declivis and T. murphyi. Taylor (2008) noted that there was a preference in the JMA 7 trawl fishery for larger jack mackerel (i.e., T. declivis). Vessels attempting to maximise their catch of T. declivis may consequently not comprehensively sample the T. novaezelandiae population in the area, resulting in a greater degree of between-year variation in the T. novaezelandiae length and age distributions.

5. ACKNOWLEDGMENTS

We thank the MPI Observer Programme for achieving good sampling coverage of the TCEPR fleet, and Peter McMillan for reviewing the manuscript. This work was funded by the Ministry for Primary Industries under project MID2010-01B.

6. REFERENCES

Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth. 358 p.
Bull, B.; Dunn, A. (2002). Catch-at-age: User manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)
Horn, P.L. (1993). Growth, age structure, and productivity of jack mackerels (Trachurus spp.) in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 145-155.
Horn, P.; Sutton, C.; Hulston, D.; Marriott, P. (2012). Catch-at-age for jack mackerels (Trachurus spp.) in the 2009-10 fishing year, and barracouta (Thyrsites atun) and silver warehou (Seriolella punctata) in the 2004-05 and 2009-10 fishing years. Final Research Report for Ministry of Fisheries Project MID2010-01A, Objectives 6 \& 8. 19 p. (Unpublished report available from Ministry for Primary Industries, Wellington.)
Lyle, J.M.; Krusic-Golub, K.; Morison, A.K. (2000). Age and growth of jack mackerel and the age structure of the jack mackerel purse seine catch. FRDC Final Report on Project 1995/034. Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Taroona, Tasmania 7053, Australia. 49 p.
Taylor, P.R. (2008). Factors affecting fish size and landed volumes in the purse-seine and TCEPR charter-boat fisheries in 2004-05 and 2005-06. New Zealand Fisheries Assessment Report 2008/32. 17 p.
Taylor, P.R.; Julian, K.A. (2008). Species composition and seasonal variability in commercial catches of jack mackerel (Trachurus declivis, T. murphyi, T. novaezelandiae) in JMA 1, 3, and 7 during 2004-05. New Zealand Fisheries Assessment Report 2008/25. 24 p.
Taylor, P.R.; Manning M.J.; Marriott, P.M. (2002). Age and growth estimation of Murphy's mackerel, Trachurus symmetricus murphyi. Final Research Report for Ministry of Fisheries Project JMA2000/02. 62 p. (Unpublished report available from Ministry for Primary Industries, Wellington.)
Taylor, P.R.; Smith, M.H.; Horn, P.L.; Ó Maolagáin, C. (2011). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2006-07, 2007-08 and 2008-09 fishing years. Final Research Report for Ministry of Fisheries Project JMA2006-01 \& JMA2009-02. 57 p. (Unpublished report available from Ministry for Primary Industries, Wellington.)

Appendix A: Fishery stratification

This section outlines the method used by Taylor et al. (2011) to obtain a stratification of the fishery using data from three heavily sampled fishing years, i.e., 2006-07 to 2008-09.

The stratification was developed from the observer data using variables that were also generally available in the catch effort data. The classification tree method (Breiman et al. 1984) was used to derive a classification tree that is defined by suitable splitting variables and whose leaves have similar proportions within each stratum and diverse proportions between strata. The same tree was used for each of the three fishing years.

A classification tree was fitted to the observer sampled catch data for the three species and the three fishing years 2006-07 to 2008-09 using the rpart package in R. The splitting criterion (impurity measure) at any node of the tree was the Gini index, which is the default setting for fitting a classification tree. The Gini index at a node with the three species proportions $\left(p^{\mathrm{D}}, p^{\mathrm{N}}, p^{\mathrm{M}}\right)$ is given by:

$$
1-\sum_{s \in\{\mathrm{D}, \mathrm{~N}, \mathrm{M}\}}\left(p^{s}\right)^{2}
$$

To ensure that the Gini index used the correct catch weighted species proportions at each node, a special data frame was required for the rpart function. Because in the initial dataset each row contained the catch details of the catch weights of all three species, three copies of the dataset were generated, one for each species, containing a species factor variable and a weight variable. For the first copy, the species variable was set to JMD and the weight variable was set to the scaled JMD catch weights, and similarly for the other two species. The three copies were then row combined to give the data frame used in the rpart function.

The use of this data frame and the setting of the weights argument in rpart equal to the weight variable ensures that the correct tow catch weighted proportions are used in node splitting. Because there were three exact copies of the covariates used to generate the tree, all three copies were transferred to the same split.

The species factor was the response variable in the rpart formula and the following covariates, which needed to be available in the catch effort data, were offered for tree generation:

month	a factor variable
fishing year	a factor variable
stat area	a factor variable
latitude	
longitude	
net depth	
bottom depth	

The cross validation measure was based on the error rate from the prediction of the species with largest proportion for each terminal node. There are two reasons why this is not the best measure of the stratification from our point of view. Firstly, the prediction performance is not directly related to the impurity species proportions of the terminal nodes because it only depends on which proportion is largest for each node. Secondly, in the random partitioning of the data frame the three species rows corresponding to a single row in the observer data will not be assigned to the same partition. This will distort the cross validation statistic. Therefore the cross validation output from rpart should only be taken as an indication of where to prune the tree when choosing the tree that defines the stratification.

Details of the fitting procedure and the subsequently selected five strata are shown in Figure A1 and Table A1.

Species proportions by area in JMA 7 could be categorised into several groupings (Figure A2). In the southernmost and offshore areas ($034,035,036,801$), T. declivis is predominant with a small fraction of T. murphyi. T. novaezelandiae seldom featured here but appeared consistently in the more northerly and inshore areas ($037,040,041,042,045$), and was most represented in the three northernmost areas ($041,042,045$). T. murphyi appeared in all areas, but rarely. T. declivis was the most highly represented in all areas.

Figure A1: Dendrogram of classification tree used in the stratification of JMA 7; the length of the branches reflect the improvement in the Gini index.

Table A1: Node details for the classification tree. Split, stratum definition; Node count, number of data rows in the node; Proportions, species proportions (JMD, JMN, JMM). Rows in bold with * indicate a leaf.

Node number		Split	Node count	Proportions
1		root	1556	(0.686 0.2410 .073)
2*		long < 173.25	568	(0.876 0.044 0.080)
3		long ≥ 173.25	988	(0.587 0.343 0.070)
6		stat.area in 037,040	388	(0.699 0.239 0.062)
	12*	fmonth in Oct-Jan,May-Jun	353	(0.754 0.176 0.070)
	13*	fmonth in Apr,Jul-Sep	35	(0.302 0.690 0.008)
7		stat.area in 039,041,042,045,046	600	(0.522 0.4050 .074)
	14*	botdepth ≥ 124.5	364	(0.606 0.2960 .098)
	15*	botdepth ≤ 124.5	236	(0.393 0.570 0.038)

Figure A2: Catch weighted species proportions by statistical area.

Appendix B: Proportions-at-age by species and fishing year

This appendix lists the estimated proportions-at-age in the JMA 7 trawl fishery, by species and fishing year. The columns in each table are headed so that, for example, the year 2007 refers to the 2006-07 fishing year. Data are presented with sexes combined, in a format that can easily be converted to a CASAL input file in a single-sex model.

Table B1: Proportions-at-age (male, female, and unsexed combined), with c.v.s, for T. novaezelandiae, by fishing year.

	Proportion					c.v.				
Age	2007	2008	2009	2010	2011	2007	2008	2009	2010	2011
0	0	0	0	0.0127	0.0007				0.913	2.006
1	0.0294	0.1574	0.0605	0.0510	0.1021	0.419	0.416	0.327	0.389	0.378
2	0.0422	0.0871	0.1319	0.2183	0.1216	0.349	0.138	0.162	0.213	0.249
3	0.0846	0.1091	0.1225	0.2108	0.1408	0.224	0.144	0.188	0.186	0.185
4	0.2088	0.0985	0.1116	0.1517	0.1312	0.124	0.171	0.309	0.172	0.114
5	0.1970	0.0959	0.0509	0.1020	0.1137	0.106	0.176	0.399	0.209	0.124
6	0.1693	0.1727	0.1244	0.0443	0.0367	0.126	0.131	0.277	0.281	0.228
7	0.0819	0.0911	0.0992	0.0319	0.0604	0.193	0.203	0.330	0.227	0.193
8	0.0358	0.0712	0.1079	0.0639	0.0503	0.276	0.216	0.293	0.211	0.189
9	0.0334	0.0357	0.0557	0.0426	0.0722	0.301	0.243	0.314	0.204	0.141
10	0.0316	0.0121	0.0485	0.0206	0.0631	0.319	0.463	0.356	0.230	0.160
11	0.0404	0.0220	0.0180	0.0181	0.0586	0.281	0.328	0.459	0.274	0.170
12	0.0324	0.0321	0.0167	0.0115	0.0160	0.311	0.302	0.518	0.252	0.328
13	0.0010	0.0080	0.0270	0.0058	0.0131	1.040	0.341	0.313	0.327	0.316
14	0.0012	0.0006	0.0062	0.0066	0.0071	0.944	1.193	0.454	0.367	0.429
15	0	0.0002	0.0081	0.0046	0.0051		1.358	0.655	0.336	0.392
16	0.0004	0	0.0003	0.0027	0.0067	1.203		1.060	0.494	0.451
17	0.0008	0.0012	0.0048	0.0005	0.0006	0.643	1.028	1.002	0.594	1.160
18	0.0006	0.0004	0.0004	0.0001	0.0001	0.864	1.021	1.251	2.105	1.712
19	0.0026	0.0011	0.0003	0.0001	0	0.671	0.949	0.884	1.916	
20	0.0025	0.0003	0	0.0000	0	0.898	0.895		1.253	
21	0	0.0003	0.0009	0	0		0.835	0.769		
22	0	0.0029	0	0	0		0.572			
23	0.0010	0	0	0.0000	0	1.022			1.134	
24	0.0034	0	0	0.0001	0	0.544			0.887	
25	0	0	0.0042	0.0000	0			0.518	2.166	
26	0	0	0	0.0002	0				1.049	

Table B2: Proportions-at-age (male, female, and unsexed combined), with c.v.s, for T. declivis, by fishing year.

	Proportion									c.v.
Age	2007	2008	2009	2010	2011	2007	2008	2009	2010	2011
0	0	0	0	0.0054	0				0.428	
1	0.0605	0.1245	0.0693	0.0180	0.0092	0.220	0.175	0.170	0.326	0.355
2	0.0737	0.2125	0.1478	0.0942	0.0390	0.172	0.145	0.134	0.207	0.191
3	0.1307	0.1357	0.1273	0.1387	0.1091	0.141	0.119	0.144	0.141	0.134
4	0.1574	0.0972	0.0416	0.1327	0.1301	0.118	0.176	0.311	0.130	0.113
5	0.0907	0.0784	0.0678	0.0923	0.0949	0.244	0.227	0.299	0.160	0.143
6	0.0728	0.0492	0.0798	0.0629	0.0963	0.303	0.325	0.322	0.190	0.153
7	0.0270	0.0491	0.0475	0.0767	0.0851	0.503	0.256	0.385	0.168	0.169
8	0.0654	0.0755	0.0343	0.0801	0.0883	0.310	0.371	0.437	0.186	0.175
9	0.0549	0.0131	0.0894	0.0768	0.0701	0.309	0.503	0.260	0.177	0.176
10	0.0315	0.0154	0.0257	0.0345	0.0750	0.486	0.482	0.463	0.300	0.184
11	0.0618	0.0443	0.0160	0.0192	0.0354	0.272	0.329	0.635	0.367	0.230
12	0.0934	0.0422	0.0819	0.0507	0.0458	0.254	0.301	0.286	0.214	0.216
13	0.0496	0.0260	0.0823	0.0435	0.0391	0.363	0.454	0.281	0.236	0.237
14	0.0137	0.0138	0.0352	0.0299	0.0478	0.537	0.456	0.476	0.268	0.209
15	0.0015	0.0024	0.0240	0.0264	0.0256	0.858	0.912	0.400	0.273	0.295
16	0	0.0005	0.0251	0.0057	0.0068		0.686	0.335	0.469	0.545
17	0.0031	0.0017	0.0023	0.0075	0.0004	0.973	0.966	0.581	0.647	1.049
18	0.0013	0.0042	0.0028	0	0.0020	1.050	0.395	0.633		1.091
19	0	0.0104	0	0.0023	0		0.762		1.020	
20	0.0006	0.0038	0	0	0	1.101	0.975			
21	0.0104	0	0	0	0	0.430				
22	0	0	0	0.0023	0				0.963	
23	0	0	0	0	0					
24	0	0	0	0.0003	0				1.254	

Table B3: Proportions-at-age (male, female, and unsexed combined), with c.v.s, for T. murphyi, by fishing year.

	Proportion									c.v.
Age	2007	2008	2009	2010	2011	2007	2008	2009	2010	2011
4	0	0	0	0.0020	0.0026				2.236	1.146
5	0	0	0	0	0					
6	0	0	0	0.0021	0.0005				1.423	2.163
7	0.0055	0	0	0	0.0073	1.041				1.841
8	0.0126	0	0	0.0026	0	0.625			1.481	
9	0.0272	0.0458	0	0.0105	0.0036	0.413	0.333		0.948	0.873
10	0.0935	0.0053	0.0144	0.0071	0.0012	0.335	0.594	0.615	0.803	1.888
11	0.1216	0.0895	0.1258	0.0350	0	0.301	0.263	0.222	0.383	
12	0.1857	0.1634	0.0784	0.0692	0	0.201	0.190	0.304	0.584	
13	0.0847	0.1708	0.1092	0.1040	0.0273	0.282	0.172	0.241	0.178	0.363
14	0.1092	0.1083	0.1499	0.1530	0.0567	0.231	0.248	0.208	0.233	0.235
15	0.0900	0.0687	0.0657	0.1227	0.1488	0.300	0.323	0.318	0.271	0.144
16	0.0628	0.0484	0.1092	0.1080	0.1823	0.410	0.309	0.235	0.192	0.130
17	0.0363	0.0538	0.0305	0.0965	0.1224	0.514	0.318	0.299	0.178	0.174
18	0.0395	0.0580	0.1163	0.0658	0.0962	0.476	0.380	0.243	0.222	0.183
19	0.0489	0.0783	0.0606	0.0308	0.1227	0.639	0.306	0.334	0.304	0.155
20	0.0244	0.0154	0.0486	0.0450	0.0784	0.722	0.521	0.371	0.235	0.228
21	0.0211	0.0364	0.0159	0.0492	0.0233	0.647	0.436	0.821	0.269	0.374
22	0	0.0180	0.0256	0.0151	0.0223		0.770	0.406	0.433	0.392
23	0.0168	0.0160	0.0251	0.0501	0.0255	1.119	0.755	0.541	0.273	0.340
24	0	0	0.0024	0.0103	0.0409			0.778	0.576	0.295
25	0.0168	0.0063	0.0138	0.0048	0.0051	1.093	1.019	0.854	0.655	0.763
26	0.0033	0.0097	0.0009	0.0076	0.0134	1.247	1.032	1.217	0.564	0.543
27	0	0.0041	0.0078	0.0046	0.0031		0.980	0.643	0.791	1.018
28	0	0.0039	0	0.0011	0.0092		0.933		1.060	0.630
29	0	0	0	0	0					
30	0	0	0	0	0.0073					0.836
31	0	0	0	0.0027	0				1.014	

