Ministry for Primary Industries

Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2012-13 fishing year, with a summary of all available data sets

New Zealand Fisheries Assessment Report 2014/58
P.L. Horn
C. Ó Maolagáin
D. Hulston

ISSN 1179-5352 (online)
ISBN 978-0-478-43767-6 (online)
October 2014

Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140
Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx
http://fs.fish.govt.nz go to Document library/Research reports
© Crown Copyright - Ministry for Primary Industries
Table of Contents EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
2. METHODS 3
3. RESULTS 4
3.1 Catch sampling 4
3.2 Species proportions 6
3.3 Sex ratios 7
3.4 Catch-at-length 7
3.5 Catch-at-age 9
3.6 Data summaries 12
3.7 Estimation of mortality rates 17
4. DISCUSSION 18
5. ACKNOWLEDGMENTS 20
6. REFERENCES 20
Appendix A: Proportions-at-age by species and fishing year 21

EXECUTIVE SUMMARY

Horn, P.L.; Ó Maolagáin, C.; Hulston, D. (2014). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2012-13 fishing year, with a summary of all available data sets.

New Zealand Fisheries Assessment Report 2014/58. 24 p.

This report describes the scientific observer sampling programme carried out on trawl landings of jack mackerel (Trachurus novaezelandiae, T. declivis, and T. murphyi) in JMA 7 during the 2012-13 fishing year, and the estimates of species proportions and sex ratios in the landings, catch-at-length, and catch-at-age for these species.

Each tow in the observer data included estimated total jack mackerel catch and weights by species sampled from the tow. The sampled weights were scaled to give estimated total catch weights by species for the tow. Stratification of the data was required because the observer coverage and catch composition varied with both month and statistical area. Over 90% of the 2012-13 landed catch was sampled, and sampling was found to be representative of the landings both temporally and spatially.

For all three species, the scaled length distributions from 2012-13 were generally similar to those from the six previous years. The age-frequency distributions for all species in 2012-13 had mean weighted CVs of 21% or less, which more than met the target of 30%. By species, there is clear variation in catch-at-age between years, and it is apparent that for all species this variation is largely a consequence of the progression of year classes with different relative strengths.

Estimated species proportions indicated a predominance of T. declivis at $65-71 \%$ in the JMA 7 TCEPR catch throughout all statistical areas and the six years of sampling, while T. novaezelandiae made up $25-30 \%$ and T. murphyi $3-8 \%$.

Estimates of total instantaneous mortality rates over the last seven years were 0.25 for T. novaezelandiae and 0.20 for T. declivis. These values were only slightly higher than the likely value of $M(0.18)$, and indicated that both species in JMA 7 were relatively lightly exploited.

1. INTRODUCTION

Commercial catches of jack mackerel are recorded as an aggregate of the three species (Trachurus declivis, T. murphyi, and T. novaezelandiae) under the general code JMA, so separate species catch information is not available for the separate jack mackerel quota management areas (Figure 1) from MPI databases. Estimates of proportions of the three Trachurus species in the catch are essential for assessment of the individual stocks. Reliable estimates of species proportions can however be used to apportion the aggregated catch histories to provide individual catch histories for each species at least back to when observer sampling began, which can in turn be used to scale age samples from the various fisheries. Recently the JMA 7 fishery has been primarily a trawl fishery with a small proportion of catches made using purse seine or set net. In earlier years larger proportions of the catch came from purse seine fishing (Taylor \& Julian 2008).

Figure 1: Jack mackerel administrative Fishstocks.

This report provides estimates of relative proportions and catch-at-age using observer data for the three Trachurus species in the commercial JMA 7 catch for 2012-13. Similar data were presented by Taylor et al. (2011) for 2006-07, 2007-08 and 2008-09, Horn et al. (2012a) for 2009-10, Horn et al. (2012b) for 2010-11, and Horn et al. (2013) for 2011-12. Summaries of the time series of catch-at-age estimates, sex ratios and species proportions for the JMA 7 catch are also presented. This document fulfils the reporting requirements for Objective 6 of Project MID201001D "Routine age determination of hoki and middle depth species from commercial fisheries and trawl surveys", funded by the Ministry for Primary Industries (MPI). That objective is "To determine the age and size structure of the commercial catches of jack mackerel (all three species) in the JMA 7 fishery from samples collected at sea by the Observer Programme".

The JMA 7 age and size structure of the commercial catch has been determined annually since 2006-07. A 'one-off' estimation of the age and size structure of the commercial catch of jack mackerels in JMA 3 in the 2012-13 fishing year was requested by MPI, also under Project MID201001D. The results of this investigation are presented elsewhere (Horn et al. 2014).

Age monitoring of jack mackerels over time was carried out previously for jack mackerel species in New Zealand by Horn (1993) who tracked strong and weak age classes of T. declivis and T. novaezelandiae
through time to provide a qualitative validation for ageing these two species. There was no significant difference in growth between sexes for either species although geographical differences were evident between the Bay of Plenty and the central west coast.

2. METHODS

Catch sampling for length, sex, age, and species composition was carried out by observers working primarily on board large trawl vessels targeting jack mackerels. Sampling was generally carried out according to instructions developed at NIWA and included in the Scientific Observers Manual. Most tow records in the observer dataset include estimated total jack mackerel catch and weights by species sampled from the tow. All observer data on jack mackerels sampled from JMA 7 in the 2012-13 fishing year were extracted for the analyses. As in previous analyses, estimated species proportions (by weight) in each sampled tow were assumed to be the same as the proportions in a randomly selected sample from the catch (Taylor et al. 2011). The observer data were examined for spatial and temporal variability, and this was compared with the spatial and temporal distribution of the entire commercial JMA 7 catch. All data from one observed trip (trip 3661) were removed from the analysis as many of the mackerel identified as T. novaezelandiae were longer than 42 cm and so were most likely T. declivis.

Commercial catch data extracted from the Ministry for Primary Industries catch-effort database "warehou" (Extract \#9335) were also used in these analyses. The data comprised estimated catch and associated date, position, depth, and method data from all fishing events that recorded catches of jack mackerel from JMA 7 (i.e., QMAs 7, 8, and 9) in 2012-13.

Stratification of the data was required because the observer coverage varied with both month and statistical area, the fishery was not consistent throughout the year, and the species composition varied across area and depth (Taylor et al. 2011). The derivation of the five strata used in this analysis is shown in Appendix A of Horn et al. (2012b). Each fishing event from the catch-effort dataset and the observer dataset was allocated to one of the five strata, i.e.,

- west coast South Island,
- Statistical Areas 037 and 040 from October-January and May-June,
- Statistical Areas 037 and 040 from April and July-September,
- all remaining areas shallower than 124.5 m ,
- all remaining areas deeper than 124.5 m .

Proportions of the catch by species were estimated as follows. For each observed tow, the catch weight of each species was estimated based on the species weight proportions of a random sample. Each observed tow was allocated to one of the five strata. Within each stratum, the estimated landed weights of each species were summed across all observed tows. Percentages of catch by species were then calculated for each stratum. Total jack mackerel catch by stratum was obtained by summing the reported estimated landing weights of all tows (from the catch-effort dataset) in that stratum. The species percentages derived for that stratum were then applied to the total summed catch to estimate catch by species in that stratum. The estimated catch totals were then summed across strata (by species) to produce total estimated catch weight by species for the fishing year, and, consequently, total species proportions by weight.

Ageing was completed for all three Trachurus species caught by trawl in Statistical Areas 033-048 and 801 of JMA 7 (Figure 2) in the 2012-13 fishing year, using data and otoliths collected by observers. For each species, samples of otoliths (for each sex separately) from each 1 cm length class were selected approximately proportionally to their occurrence in the scaled length frequency, with the constraint that the number of otoliths in each length class (where available) was at least one. In addition, otoliths from fish in the extreme right hand tail of the scaled length frequency (constituting about 2% of that length frequency) were over-sampled. Target sample sizes were about 550 per species. Sets of five otoliths were embedded in blocks of clear epoxy resin and cured at $50^{\circ} \mathrm{C}$. Once hardened, a $380 \mu \mathrm{~m}$
thin transverse section was cut from each block through the primordia using a high speed saw. The thin section was washed, dried, and embedded under a cover slip on a glass microscopic slide. Thin sections were read with a bright field stereomicroscope at up to $\times 100$ magnification. Zone counts were based on the number of complete opaque zones (i.e., opaque zones with translucent material outside them), which were counted to provide data for age estimates. Otoliths of T. declivis and T. novaezelandiae were read following the validated methods described by Horn (1993) and Lyle et al. (2000). A validated ageing method has not yet been developed for T. murphyi in New Zealand waters (Beentjes et al. 2013). Otoliths from this species were interpreted similarly to those of T. declivis. However, they are notably harder to read, with presumed annual zones often being diffuse, split, or containing considerable microstructure (Taylor et al. 2002).

The age data were used to construct age-length keys (by species and sex) which in turn were used to convert the weighted length composition of the catch to catch-at-age by sex using the NIWA catch-at-age software (Bull \& Dunn 2002). This software also provided estimates of CVs-at-age using a bootstrap procedure. Sex ratios by species were also derived at this stage.

Figure 2: Statistical Areas referred to in the text.

3. RESULTS

3.1 Catch sampling

The landings distribution in 2012-13 shows that there was a fishery from October to January concentrated in Statistical Areas 037 and 040-042, followed by a secondary fishery centred around June and concentrated in the same statistical areas (excluding 042) as well as off the northwest South

Island (Areas 034-036) (Table 1). Because the two fishery peaks were quite widely separated in time it was considered desirable to split the year into two equal parts (i.e., a split between March and April), and use separate age-length keys for each part (to account for the growth of fish, particularly of the younger age classes). In each time period, the data were analysed in the five strata determined previously (Taylor et al. 2011, Horn et al. 2012b).

In 2012-13, about 95% of the landed weight was sampled by observers (Table 1). Most of the estimated landings were derived from four Statistical Areas (037, 040-042), and these were all well sampled (Figure 3). The percentage of the catch sampled in all but one month was greater than 63% (Figure 3). Only Area 039 and September were under-sampled, although catches from both those strata were low. Clearly, the sampling of the whole fishery was satisfactory to estimate the overall catch-at-age. The estimated catch weight sampled in some months and areas was slightly greater than the estimated catch. This can occur if observers and skippers record different estimated catch weights for a tow, or if the recorded location of an individual tow differs in the two databases resulting in it being allocated to different statistical areas.

Table 1: Distribution of estimated total catch and sampled landings (t, rounded to the nearest tonne) of jack mackerels, by month and Statistical Area (Stat Area), in the 2012-13 fishing year. Values of 0 indicate landings from 1 to 499 kg ; blank cells indicate zero landings or samples. \%, percentage of estimated total catch that was sampled by observers, by month and statistical area.

Estimated total catch (t), 2012-13

Sampled landings (t)

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	All	\%
017													0	0
033													0	0
034								0	252	47	28	4	331	91.1
035	0						27	2	364	142	325	1	861	107.3
036	339							243	747	319	81		1730	92.3
037	212	108	1036	1466	309	1173	2165	0	128	63	56		6715	100.0
038													0	0
039													0	0
040	435	79	1247	2338	176	169	600	16	741	231	9		6041	109.8
041	447	736	5337	756		4		4	295	94	1		7673	96.3
042	1043	417	1347	513						0		0	3321	86.2
045	452	9										1	461	52.0
46-47	0											0	1	46.3
801	77							21	295				393	65.4
	3006	1348	8967	5074	486	1345	2791	286	2823	896	500	5	27527	94.6
	65.1	95.6	101.1	104.8	106.2	93.4	100.2	63.4	97.8	104.1	103.6	47.9	94.6	

3.2 Species proportions

An examination of estimated species proportions by fishing year (Table 2) indicates that T. declivis (JMD) was the dominant species during the period examined, with $65-71 \%$ of landed weight in all years. T. novaezelandiae (JMN) was the second most frequently caught species at $25-30 \%$. T. murphyi (JMM) was detected at a much lower and quite variable rate of $3-8 \%$.

Table 2: Estimated species proportions (by weight) and catch weights by species in JMA 7 since 2006-07. 'Estimated catch' is the sum of all the tow-by-tow estimates of jack mackerel catch.

Fishing year	Species proportions (\%)			Estimated catch (t)			Landed catch (t)		
	JMD	JMN	JMM	JMD	JMN	JMM	JMD	JMN	JMM
2006-07	69.5	26.8	3.7	21248	8188	1128	22273	8583	1183
2007-08	64.8	27.0	8.2	21033	8763	2671	22064	9193	2802
2008-09	66.4	25.3	8.3	17943	6826	2236	19154	7287	2387
2009-10	65.9	27.6	6.5	19487	8155	1933	20526	8590	2036
2010-11	70.6	26.9	2.5	18679	7123	650	19897	7587	692
2011-12	68.6	28.1	3.3	18184	7456	880	19381	7497	938
2012-13	67.3	29.7	3.3	19525	8638	950	21311	9428	1037

Figure 3: Observed landings and landings that were not observed, by Statistical Area and month, in 201213.

3.3 Sex ratios

Sex ratios by fishing year since 2006-07 are shown in Table 3. Generally, ratios were around 50% for T. declivis and T. novaezelandiae, although T. novaezelandiae consistently had more females than males. The sex ratios for T. murphyi indicate a population quite strongly biased towards males (i.e., 54-62\%).

Table 3: Estimated sex ratios (\%) in the JMA 7 catch by species and fishing year.

	JMD				JMN			

3.4 Catch-at-length

The estimated catch-at-length distributions, by species, for trawl-caught jack mackerel from JMA 7 in 2012-13 are plotted in Figure 4. For T. novaezelandiae there were two length modes (i.e., $16-21 \mathrm{~cm}$, and $29-33 \mathrm{~cm}$). For T. declivis there were strong length modes at $28-32 \mathrm{~cm}$ and $41-46 \mathrm{~cm}$, and another mode at about $19-21 \mathrm{~cm}$. The length range of T. murphyi was very narrow, with most fish 4854 cm . For all species, there was little between-sex difference in the length distributions.

Figure 4: Estimated catch-at-length distributions, by species and sex, from JMA 7 in 2012-13.

3.5 Catch-at-age

The details of the estimated catch-at-age distributions for trawl-caught jack mackerel from JMA 7 in 2012-13 are presented for T. novaezelandiae in Table 4, T. declivis in Table 5, and T. murphyi in Table 6. The mean weighted CVs for T. novaezelandiae (19\%), T. declivis (17\%), and T. murphyi (21%) were all well below the target value of 30%. The estimated distributions are plotted in Figure 5 . The catch of T. novaezelandiae was dominated by 2-6 year old fish, with very few fish older than 14 years. The catch of T. declivis had abundant fish aged 1-15 years old, but with a strong drop-off in fish older than 15 years. The catch of T. murphyi was dominated by 14-19 year old fish, with very few fish younger than 14 or older than 21 years.

Table 4: Calculated numbers-at-age, separately by sex, with CVs, for Trachurus novaezelandiae caught during commercial trawl operations in JMA 7 during the 2012-13 fishing year. Summary statistics for the sample are also presented.

Age (years)	Male	CV	Female	CV	Total	CV
0	406515	0.610	414613	0.626	821128	0.524
1	864212	0.535	668799	0.662	1533011	0.463
2	1960220	0.316	2082226	0.260	4042446	0.244
3	3754568	0.171	3121434	0.171	6876002	0.151
4	1179878	0.249	1029009	0.242	2208889	0.179
5	1023793	0.141	1505017	0.139	2528810	0.101
6	1303575	0.112	1618629	0.138	2922204	0.089
7	410477	0.231	514770	0.269	925247	0.183
8	492224	0.226	548194	0.279	1040418	0.172
9	457071	0.217	611354	0.235	1068425	0.159
10	164872	0.360	410134	0.281	575004	0.226
11	496281	0.200	431144	0.280	927425	0.163
12	730164	0.163	363794	0.294	1093958	0.144
13	450100	0.226	483290	0.234	933390	0.165
14	373097	0.236	273902	0.277	646997	0.179
15	79625	0.492	73714	0.510	153339	0.358
16	61895	0.480	46469	0.842	108364	0.458
17	157436	0.318	92518	0.501	249954	0.280
18	78455	0.546	101117	0.393	179573	0.317
19	0	-	32947	0.769	32947	0.769
20	0	-	0	-	0	-
21	0	-	0	-	0	-
22	0	-	0	-	0	-
23	0	-	14612	0.835	14612	0.835
24	0	-	6358	0.903	6358	0.903
No. measured		11727		11153		22880
No. aged		237		225		462
No. of tows sampled					279	
Mean weighted	CV (\%)	24.2		25.1		19.3

Table 5: Calculated numbers-at-age, separately by sex, with CVs, for Trachurus declivis caught during commercial trawl operations in JMA 7 during the 2012-13 fishing year. Summary statistics for the sample are also presented.

Age (years)	Male	CV	Female	CV	Total	CV
0	59818	1.131	56582	0.948	116399	0.793
1	1399030	0.251	906451	0.292	2305481	0.238
2	1649286	0.299	2009531	0.205	3658818	0.199
3	1888938	0.183	1282678	0.227	3171616	0.161
4	1160448	0.240	1485000	0.189	2645448	0.161
5	1229814	0.195	806978	0.228	2036793	0.153
6	579602	0.226	387727	0.248	967328	0.170
7	647917	0.178	346947	0.248	994863	0.149
8	603222	0.194	614664	0.187	1217885	0.135
9	516151	0.210	910648	0.155	1426798	0.125
10	574818	0.218	755217	0.185	1330036	0.140
11	183403	0.137	1003292	0.156	2186695	0.099
12	1056128	0.145	661160	0.187	1717288	0.113
13	470456	0.212	466892	0.216	937347	0.149
14	521613	0.203	509357	0.211	1030970	0.143
15	459425	0.208	596107	0.199	1055532	0.149
16	137844	0.414	408196	0.253	546041	0.211
17	114497	0.525	373740	0.264	488237	0.243
18	0	-	135411	0.399	135411	0.399
19	104859	0.472	162290	0.369	267148	0.292
20	0	-	30372	0.868	30372	0.868
21	59128	0.701	0	-	59128	0.701
22	0	-	37269	0.801	37269	0.801
21						
No. measured		16549		16673		33222
No. aged		299		294		593
No. of tows sampled					402	
Mean weighted	CV (\%)	22.2		21.8		16.8

Table 6: Calculated numbers-at-age, separately by sex, with CVs, for Trachurus murphyi caught during commercial trawl operations in JMA 7 during the 2012-13 fishing year. Summary statistics for the sample are also presented.

Age (years)	Male	CV	Female	CV	Total	CV
8	5494	0.966	7564	1.001	13058	0.710
9	5531	0.838	79	3.970	5610	0.869
10	5843	0.911	4321	1.014	10164	0.714
11	0	-	0	-	0	-
12	4291	0.947	9951	0.654	14242	0.499
13	4530	0.638	11831	0.549	16360	0.432
14	28550	0.265	22027	0.393	50577	0.231
15	48435	0.185	46692	0.243	95128	0.142
16	84291	0.144	43698	0.255	127989	0.111
17	68740	0.146	61331	0.184	130072	0.107
18	37769	0.200	29966	0.240	67735	0.145
19	29526	0.223	26276	0.274	55802	0.164
20	16420	0.302	10649	0.437	27069	0.245
21	1950	0.724	1632	1.157	3582	0.664
22	2883	0.766	5246	0.638	8130	0.479
23	2292	0.757	2645	0.715	4937	0.487
24	1416	1.140	789	1.357	2205	0.894
25	1468	1.069	4483	0.629	5950	0.532
26	0	-	0	-	0	-
27	1581	0.915	0	-	1581	0.915
28	0	-	4073	0.816	4073	0.816
29	1501	1.079	1667	1.109	3168	0.785
30	0	-	0	-	0	-
31	1468	1.045	0	-	1468	1.045

No. measured	554	443	997
No. aged	277	171	448
No. of tows sampled			165
Mean weighted CV (\%)	26.4	35.0	21.2

T. novaezelandiae

Figure 5: Estimated commercial catch-at-age distributions, by species and sex, from JMA 7 in 2012-13.

3.6 Data summaries

Catch-at-length and catch-at-age data from the JMA 7 fishery are now available from seven consecutive years since 2006-07. Mean weighted CVs for the length and age distributions, by sex and year, are listed for each species in Table 7. The CVs for the total age distributions met or exceeded the target of 30% for all species in all years, except for Trachurus murphyi in 2006-07.

Total (i.e., sexes combined) scaled length and age distributions, by species and fishing year are shown in Figures 6-8. The data used to produce these catch-at-age distributions are listed in Appendix A.

Table 7: Mean weighted CVs (mwCV) for catch-at-age and catch-at-length distributions, by species, sex, and fishing year.

		Catch-at-age mwCV (\%)				Catch-at-length mwCV (\%)		
	Species	Fishing year	Males	Females	Total		Males	Females
T. declivis	$2006-07$	31	38	25		12	12	9
	$2007-08$	26	34	24		13	13	12
	$2008-09$	34	40	27		11	10	9
	$2009-10$	25	28	20	13	12	10	
	$2010-11$	25	23	18	12	11	9	
	$2011-12$	21	20	16		15	15	13
T. novaezelandiae	$2012-13$	22	22	17	17	16	14	
	$2006-07$	26	24	19	17	16	14	
	$2007-08$	27	25	22	17	12	13	
	$2008-09$	39	39	30	14	11	11	
	$2009-10$	32	27	23	16	15	12	
	$2010-11$	28	24	20	20	16	15	
	$2011-12$	23	21	16	17	16	14	
	$2012-13$	24	25	19	19	17	16	
	$2006-07$	41	57	38	37	37	31	
	$2007-08$	34	48	30	17	21	14	
	$2008-09$	35	48	30	20	21	15	
	$2009-10$	35	47	30	27	28	23	
	$2010-11$	31	36	23	28	28	21	
	$2011-12$	26	30	20	20	22	16	
	$2012-13$	26	35	21	30	33	24	

Trachurus novaezelandiae

Scaled catch-at-length frequencies by fishing year are shown in Figure 6. They had single modes at $28-31 \mathrm{~cm}$ in all distributions except 2009-10, and 2012-13 when there were second modes at 24 and 20 cm respectively. Most variation in abundance occurred with the fish shorter than 25 cm , presumably relating to the relative strengths of juvenile year classes. Scaled catch-at-age frequencies by fishing year, varied between years (Figure 6). However, some possible year class progressions can be postulated. The $1+$ year class was strong in 2007-08, and maintained a relatively high abundance in all subsequent years. The $1+$ year class in 2008-09 was also relatively strong. Year classes 4,5 , and 6 in 2006-07 also appeared to be relatively strong throughout the series, although there were some inconsistencies e.g., year classes 7 in 2009-10 and 10 in 2011-12 were weak. The strong $3+$ year class in 2012-13 was also relatively strong in the two previous years.

Trachurus declivis

Scaled catch-at-length frequencies by fishing year are shown in Figure 7 with most of the fish 16-50 cm . There was a strong mode at $42-44 \mathrm{~cm}$, with lesser modes for smaller fish in the distributions for some years, e.g., 30 cm in 2012-13. Most variation in abundance occurred with the fish shorter than 37 cm , presumably related to the relative strengths of juvenile year classes. Scaled catch-at-agefrequencies by fishing year, are shown in Figure 7. There was a wide range of ages in the catches, and the distributions varied between years. There was evidence of two relatively strong year classes aged 1 and 2 years in 2007-08 that maintained a relatively high abundance up to 2011-12, but were relatively weak in 2012-13. The 2011-12 1+ year class appeared to be relatively strong.

Trachurus murphyi

Scaled catch-at-length frequencies by fishing year, are shown in Figure 8. All the distributions are unimodal at 49-51 cm, and are generally similar with few fish smaller than 45 cm . Scaled catch-at-age
frequencies by fishing year (Figure 8) exhibit a wide range of ages although few fish younger than 10 years were recorded in any year. There was evidence of relatively strong year classes at ages 11 and 12 years in 2006-07 that progressed to ages 16 and 17 in 2011-12.

Figure 6: Scaled catch-at-length (left panel) and catch-at-age (right panel) proportions for the catch of Trachurus novaezelandiae sampled from the 2006-07 to 2012-13 fishing years.

Figure 7: Scaled catch-at-length (left panel) and catch-at-age (right panel) proportions for the catch of Trachurus declivis sampled from the 2006-07 to 2012-13 fishing years.

Figure 8: Scaled catch-at-length (left panel) and catch-at-age (right panel) proportions for the catch of Trachurus murphyi sampled from the 2006-07 to 2012-13 fishing years.

3.7 Estimation of mortality rates

Estimates of total instantaneous mortality (Z) were made for T. novaezelandiae and T. declivis in each sampled year, and for all years combined, using the method of Chapman \& Robson (1960) as implemented using the R software developed by Ogle (2014), i.e.,

$$
Z=\log _{e}\left(\frac{1+a-1 / n}{a}\right)
$$

where a is the mean age above recruitment age and n is the sample size. Age at recruitment is the age at which 100% of fish are estimated to be vulnerable to the sampling method, and it varied between years (see Figures 6 and 7). Each sample was standardised so that an effective sample size of 1000 aged fish produced the Z estimate for each year.

Mortality rate estimates with confidence intervals are presented in Table 8. The catch-at-age distributions for the combined samples (i.e., the standardised age distributions summed across the seven sampled years) are shown in Figure 9. Age ranges used to estimate Z were allowed to vary between samples, with the minimum age in the range being essentially the age of the most abundant year class. It was believed that age at full recruitment could vary between years owing to different levels of fishing intensity in different areas and depths, which influences the minimum age of years classes comprehensively sampled. Using this method, for T. novaezelandiae, Z estimates were 0.22 0.37 , with a value of 0.25 for all years combined. Estimates for T. declivis are slightly lower, 0.16 0.23 , with a combined value of 0.20 . Inflexion points in the catch-curves (Figure 9) indicate that at some time between ages 10 and 15 years, both species (but particularly T. declivis) experienced a change in mortality (or some other factor responsible for removals from the population) from a slower to a faster rate.

Table 8: Estimates of total instantaneous mortality (Z) with standard errors (s.e.) and 95% confidence intervals (95% CI) for T. novaezelandiae and T. declivis, by year, and for all years combined. 'Age range’ denotes the age classes (years) used to estimate Z.

	Trachurus novaezelandiae				Trachurus declivis			
Year	Age range	Z	s.e.	95\% CI	Age range	Z	s.e.	95\% CI
2006-07	4-14	0.372	0.012	0.349-0.396	4-15	0.227	0.007	0.213-0.241
2007-08	1-14	0.223	0.007	0.210-0.237	2-20	0.233	0.007	0.219-0.248
2008-09	2-19	0.219	0.007	0.206-0.233	2-18	0.169	0.005	0.159-0.180
2009-10	2-19	0.314	0.010	0.295-0.334	3-17	0.208	0.007	0.195-0.221
2010-11	3-18	0.243	0.008	0.228-0.258	4-18	0.213	0.007	0.200-0.227
2011-12	5-18	0.243	0.008	0.228-0.258	3-18	0.206	0.007	0.193-0.219
2012-13	3-19	0.250	0.008	0.234-0.265	2-22	0.161	0.005	0.151-0.171
All years	3-23	0.248	0.003	0.242-0.254	3-22	0.197	0.002	0.192-0.202

The Working Group recommended that a single age at full recruitment be used for each species. Consequently, Z values were also estimated using a minimum age of 6 years for T. novaezelandiae and 4 years for T. declivis (Table 9), ages believed to be very likely fully recruited, based on the sets of distributions in Figures 6 and 7. For T. novaezelandiae, Z estimates were $0.24-0.46$, with a value of 0.30 for all years combined. Estimates for T. declivis are lower, $0.16-0.23$, with a combined value of 0.20 .

Table 9: Estimates of total instantaneous mortality (Z) with standard errors (s.e.) and $\mathbf{9 5 \%}$ confidence intervals (95% CI) for T. novaezelandiae and T. declivis, by year, and for all years combined. 'Age range' denotes the age classes (years) used to estimate Z.

	Trachurus novaezelandiae				Trachurus declivis			
Year	Age range	Z	s.e.	95\% CI	Age range	Z	s.e.	95\% CI
2006-07	6-14	0.430	0.019	0.392-0.467	4-15	0.227	0.007	0.213-0.241
2007-08	6-14	0.463	0.022	0.420-0.507	4-20	0.220	0.009	0.203-0.238
2008-09	6-19	0.348	0.015	0.318-0.377	4-18	0.167	0.006	0.155-0.179
2009-10	6-19	0.308	0.019	0.271-0.345	4-17	0.217	0.007	0.202-0.231
2010-11	6-18	0.264	0.012	0.241-0.287	4-18	0.213	0.007	0.200-0.227
2011-12	6-18	0.236	0.009	0.219-0.253	4-18	0.216	0.007	0.202-0.231
2012-13	6-19	0.244	0.011	0.222-0.266	4-22	0.164	0.006	0.152-0.176
All years	6-23	0.296	0.005	0.287-0.306	4-22	0.200	0.003	0.195-0.206

T. novaezelandiae

T. declivis

Figure 9: Estimated catch-at-age for T. novaezelandiae and T. declivis in JMA 7, for the years 2006-07 to 2012-13 combined.

4. DISCUSSION

The 2012-13 jack mackerel trawl fishery was comprehensively sampled (as it was in all years since at least 2006-07). Sampling intensity was high in all months, with more than 60% of the catch sampled in all months with substantial landings. Spatially, there was very good coverage of catch in the heavily fished Statistical Areas (037, 040-042); only Area 039 was under-sampled, but it produced less than 2% of the catch. Estimates of the 2012-13 catch-at-age for all three jack mackerel species had mean weighted CVs over all age classes of 21% or less, well below the target of 30%.

Although sampling intensity was high, there was clearly an issue (also apparent in previous years) of some misidentification of the different jack mackerel species. One entire trip was removed from the analysis because the T. novaezelandiae data from it included a large mode of fish with lengths of 4050 cm , almost certainly misidentified T. declivis. It was also likely that some fish from other observed trips were misidentified. When the raw age data were plotted against length, 1.8% of the aged T. declivis appeared as outliers that fitted well on the growth curve for T. novaezelandiae, and 4.7% of aged T. novaezelandiae were outliers that fitted well on the T. declivis growth curve. Such
misidentifications are apparent only for the older and larger fish of both these species because the length-at-age ranges of both species overlapped significantly for the small, young fish. So the actual misidentification percentages of T. declivis and T. novaezelandiae are likely to be higher than the values noted above. It was also possible that some misidentification occurred between T. declivis and T. murphyi, but because the length-at-age ranges for these species overlapped significantly it was not possible to estimate any percentages.

Estimates of species proportions indicated a consistent predominance of T. declivis at $65-71 \%$ of total catch weight in the seven fishing years from which data were available. The percentage of T. novaezelandiae was also consistent temporally at $25-30 \%$. The predominance of T. declivis overall is expected given that this species generally occurs deeper and further offshore than T. novaezelandiae and that most of the vessels targeting jack mackerels are restricted to fishing at least 12 n . miles, and often 25 n . miles off the coast.

Most of the T. declivis catch in all years comprised adult fish at least 37 cm long. Differences between years in the length distributions were primarily in the abundance of fish shorter than 37 cm , and was a consequence of variation in year class strengths. The position of the mode of large T. declivis in JMA 7 (centred on 43 cm) differs to the mode in JMA 3 (centred on 48 cm), and Horn et al. (2014) proposed that this was a consequence of large T. declivis migrating south out of the JMA 7 area.

The mean age of T. murphyi in the catch generally increased over the six sampled years. In 2006-07, most fish were $10-15$ years old, compared with $15-20$ years old in 2010-11 and 2011-12. This is indicative of a strong recruitment pulse, comprising several year classes, possibly as a result of immigration from international waters. These year classes are now growing through, with no evidence of any substantial new immigration or recruitment through spawning success. The collected data on sex of T. murphyi indicated a population consistently biased towards males (i.e., $54-62 \%$ of sampled fish). It is known (author's unpublished data) that T. murphyi can, at times, be quite difficult to sex, with deposits of fat in the body cavity often appearing like male gonads when the gonads are in a regressed state. However, it is interesting to note that in four research surveys conducted on the Stewart-Snares shelf in February each year from 1993 to 1996 males were also dominant, 62-71\% of the sexed fish (Hurst \& Bagley 1997).

The T. novaezelandiae catch also had a consistent strong adult length mode (at $28-31 \mathrm{~cm}$) in all sampled years, although in 2009-10 the relative abundance of 2-4 year old fish (i.e., lengths about $20-27 \mathrm{~cm}$) outweighed the adult mode. The progression of some relatively strong year classes through the time series is apparent. Taylor (2008) noted that there was a preference in the JMA 7 trawl fishery for larger jack mackerel (i.e., T. declivis). Vessels attempting to maximise their catch of T. declivis may consequently not comprehensively sample the T. novaezelandiae population in the area, resulting in a greater degree of between-year variation in the T. novaezelandiae length and age distributions, so it is pleasing that year class progressions are still apparent under this sampling regime.

Rates of instantaneous natural mortality (M) for T. novaezelandiae and T. declivis were previously estimated to be 0.17-0.20, with the best point estimate for both species being $0.18 \mathrm{yr}^{-1}$ (Horn 1993). Estimates of instantaneous total mortality (Z) from commercial trawl fishery samples in JMA 7 in 19891991 were $0.22-0.23$ for both species (Horn 1993). The Z estimates from the current work are slightly higher for T. novaezelandiae (0.30) and lower for T. declivis (0.2) than those determined previously. The general similarity of Z estimates from the same fishery but separated by about 20 years, and the conclusion that Z is close to or slightly higher than the likely value of M, suggest that T. novaezelandiae and T. declivis in JMA 7 are not over-exploited. The inflexion in the catch-curve for T. declivis (see Figure 9) suggesting a change in mortality from a slower to a faster rate at around age 13 years may not be related to mortality at all, but instead may be a consequence of migration of larger (older) fish from the JMA 7 area to the JMA 3 area (Horn et al. 2014).

5. ACKNOWLEDGMENTS

We thank the MPI Observer Programme for achieving good sampling coverage of the TCEPR fleet, and Peter McMillan for reviewing the manuscript. This work was funded by the Ministry for Primary Industries under project MID2010-01D.

6. REFERENCES

Beentjes, M.P.; Neil, H.L.; Taylor, P.R.; Marriot, P. (2013). Further studies on age validation of Murphy's mackerel (Trachurus symmetricus murphyi). New Zealand Fisheries Assessment Report 2013/14. 38 p.
Bull, B.; Dunn, A. (2002). Catch-at-age: User manual v1.06.2002/09/12. NIWA Internal Report 114.23 p. (Unpublished report held in NIWA library, Wellington.)
Chapman, D.G.; Robson, D.S. (1960). The analysis of a catch curve. Biometrics 16: 354-368.
Horn, P.L. (1993). Growth, age structure, and productivity of jack mackerels (Trachurus spp.) in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 145-155.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2012b). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2010-11 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2012/42. 21 p.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2013). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2011-12 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2013/43. 23 p.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2014). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 3 in the 2012-13 fishing year. New Zealand Fisheries Assessment Report 2014/57. 16 p.
Horn, P.; Sutton, C.; Hulston, D.; Marriott, P. (2012a). Catch-at-age for jack mackerels (Trachurus spp.) in the 2009-10 fishing year, and barracouta (Thyrsites atun) and silver warehou (Seriolella punctata) in the 2004-05 and 2009-10 fishing years. Final Research Report for Ministry of Fisheries Project MID2010-01A, Objectives $6 \& 8.19$ p. (Unpublished report available from Ministry for Primary Industries, Wellington.)
Hurst, R.J.; Bagley, N.W. (1997). Trends in Southland trawl surveys of inshore and middle depth species, 1993-96. New Zealand Fisheries Technical Report 50, 67 p.
Lyle, J.M.; Krusic-Golub, K.; Morison, A.K. (2000). Age and growth of jack mackerel and the age structure of the jack mackerel purse seine catch. FRDC Final Report on Project 1995/034. Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Taroona, Tasmania 7053, Australia. 49 p.
Ogle, D.H. (2014). FSA: Fisheries Stock Analysis. R package version 0.4.11. Available at: http://fishr.wordpress.com/fsa/
Taylor, P.R. (2008). Factors affecting fish size and landed volumes in the purse-seine and TCEPR charter-boat fisheries in 2004-05 and 2005-06. New Zealand Fisheries Assessment Report 2008/32. 17 p.
Taylor, P.R.; Julian, K.A. (2008). Species composition and seasonal variability in commercial catches of jack mackerel (Trachurus declivis, T. murphyi, T. novaezelandiae) in JMA 1, 3, and 7 during 2004-05. New Zealand Fisheries Assessment Report 2008/25. 24 p.
Taylor, P.R.; Manning M.J.; Marriott, P.M. (2002). Age and growth estimation of Murphy's mackerel, Trachurus symmetricus murphyi. Final Research Report for Ministry of Fisheries Project JMA2000/02. 62 p. (Unpublished report available from Ministry for Primary Industries, Wellington.)
Taylor, P.R.; Smith, M.H.; Horn, P.L.; Ó Maolagáin, C. (2011). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2006-07, 2007-08 and 2008-09 fishing years. Final Research Report for Ministry of Fisheries Project JMA2006-01 \& JMA2009-02. 57 p. (Unpublished report available from Ministry for Primary Industries, Wellington.)

Appendix A: Proportions-at-age by species and fishing year

This appendix lists the estimated proportions-at-age in the JMA 7 trawl fishery, by species and fishing year. The columns in each table are headed so that, for example, the year 2007 refers to the 2006-07 fishing year. Data are presented with sexes combined, in a format that can easily be converted to a CASAL input file in a single-sex model.

Table A1: Proportions-at-age (male, female, and unsexed combined), with CVs, for T. novaezelandiae, by fishing year.

	Proportion							CV						
Age	2007	2008	2009	2010	2011	2012	2013	2007	2008	2009	2010	2011	2012	2013
0	0	0	0	0.0127	0.0007	0	0.0284				0.913	2.006		0.524
1	0.0294	0.1574	0.0605	0.0510	0.1021	0.0168	0.0531	0.419	0.416	0.327	0.389	0.378	0.487	0.463
2	0.0422	0.0871	0.1319	0.2183	0.1216	0.0934	0.1399	0.349	0.138	0.162	0.213	0.249	0.209	0.244
3	0.0846	0.1091	0.1225	0.2108	0.1408	0.0598	0.2380	0.224	0.144	0.188	0.186	0.185	0.219	0.151
4	0.2088	0.0985	0.1116	0.1517	0.1312	0.1210	0.0765	0.124	0.171	0.309	0.172	0.114	0.109	0.179
5	0.1970	0.0959	0.0509	0.1020	0.1137	0.1668	0.0875	0.106	0.176	0.399	0.209	0.124	0.097	0.101
6	0.1693	0.1727	0.1244	0.0443	0.0367	0.0868	0.1012	0.126	0.131	0.277	0.281	0.228	0.133	0.089
7	0.0819	0.0911	0.0992	0.0319	0.0604	0.0712	0.0320	0.193	0.203	0.330	0.227	0.193	0.176	0.183
8	0.0358	0.0712	0.1079	0.0639	0.0503	0.0523	0.0360	0.276	0.216	0.293	0.211	0.189	0.187	0.172
9	0.0334	0.0357	0.0557	0.0426	0.0722	0.0739	0.0370	0.301	0.243	0.314	0.204	0.141	0.157	0.159
10	0.0316	0.0121	0.0485	0.0206	0.0631	0.0334	0.0199	0.319	0.463	0.356	0.230	0.160	0.252	0.226
11	0.0404	0.0220	0.0180	0.0181	0.0586	0.0757	0.0321	0.281	0.328	0.459	0.274	0.170	0.145	0.163
12	0.0324	0.0321	0.0167	0.0115	0.0160	0.0609	0.0379	0.311	0.302	0.518	0.252	0.328	0.166	0.144
13	0.0010	0.0080	0.0270	0.0058	0.0131	0.0277	0.0323	1.040	0.341	0.313	0.327	0.316	0.222	0.165
14	0.0012	0.0006	0.0062	0.0066	0.0071	0.0200	0.0224	0.944	1.193	0.454	0.367	0.429	0.272	0.179
15	0	0.0002	0.0081	0.0046	0.0051	0.0143	0.0053		1.358	0.655	0.336	0.392	0.305	0.358
16	0.0004	0	0.0003	0.0027	0.0067	0.0127	0.0038	1.203		1.060	0.494	0.451	0.311	0.458
17	0.0008	0.0012	0.0048	0.0005	0.0006	0.0110	0.0087	0.643	1.028	1.002	0.594	1.160	0.374	0.280
18	0.0006	0.0004	0.0004	0.0001	0.0001	0.0024	0.0062	0.864	1.021	1.251	2.105	1.712	0.565	0.317
19	0.0026	0.0011	0.0003	0.0001	0	0	0.0011	0.671	0.949	0.884	1.916			0.769
20	0.0025	0.0003	0	0.0000	0	0	0	0.898	0.895		1.253			
21	0	0.0003	0.0009	0	0	0	0		0.835	0.769				
22	0	0.0029	0	0	0	0	0		0.572					
23	0.0010	0	0	0.0000	0	0	0.0005	1.022			1.134			0.835
24	0.0034	0	0	0.0001	0	0	0.0002	0.544			0.887			0.903
25	0	0	0.0042	0.0000	0	0	0			0.518	2.166			
26	0	0	0	0.0002	0	0	0				1.049			

Table A2: Proportions-at-age (male, female, and unsexed combined), with CVs, for T. declivis, by fishing year.

						Proportion								CV
Age	2007	2008	2009	2010	2011	2012	2013	2007	2008	2009	2010	2011	2012	2013
0	0	0	0	0.0054	0	0	0.0041				0.428			0.793
1	0.0605	0.1245	0.0693	0.0180	0.0092	0.0889	0.0813	0.220	0.175	0.170	0.326	0.355	0.267	0.238
2	0.0737	0.2125	0.1478	0.0942	0.0390	0.0659	0.1290	0.172	0.145	0.134	0.207	0.191	0.229	0.199
3	0.1307	0.1357	0.1273	0.1387	0.1091	0.1261	0.1118	0.141	0.119	0.144	0.141	0.134	0.162	0.161
4	0.1574	0.0972	0.0416	0.1327	0.1301	0.0886	0.0933	0.118	0.176	0.311	0.130	0.113	0.182	0.161
5	0.0907	0.0784	0.0678	0.0923	0.0949	0.1004	0.0718	0.244	0.227	0.299	0.160	0.143	0.115	0.153
6	0.0728	0.0492	0.0798	0.0629	0.0963	0.0859	0.0341	0.303	0.325	0.322	0.190	0.153	0.114	0.170
7	0.0270	0.0491	0.0475	0.0767	0.0851	0.0796	0.0351	0.503	0.256	0.385	0.168	0.169	0.117	0.149
8	0.0654	0.0755	0.0343	0.0801	0.0883	0.0575	0.0429	0.310	0.371	0.437	0.186	0.175	0.140	0.135
9	0.0549	0.0131	0.0894	0.0768	0.0701	0.0700	0.0503	0.309	0.503	0.260	0.177	0.176	0.124	0.125
10	0.0315	0.0154	0.0257	0.0345	0.0750	0.0556	0.0469	0.486	0.482	0.463	0.300	0.184	0.137	0.140
11	0.0618	0.0443	0.0160	0.0192	0.0354	0.0642	0.0771	0.272	0.329	0.635	0.367	0.230	0.127	0.099
12	0.0934	0.0422	0.0819	0.0507	0.0458	0.0454	0.0605	0.254	0.301	0.286	0.214	0.216	0.158	0.113
13	0.0496	0.0260	0.0823	0.0435	0.0391	0.0256	0.0330	0.363	0.454	0.281	0.236	0.237	0.208	0.149
14	0.0137	0.0138	0.0352	0.0299	0.0478	0.0254	0.0363	0.537	0.456	0.476	0.268	0.209	0.183	0.143
15	0.0015	0.0024	0.0240	0.0264	0.0256	0.0099	0.0372	0.858	0.912	0.400	0.273	0.295	0.339	0.149
16	0	0.0005	0.0251	0.0057	0.0068	0.0055	0.0193		0.686	0.335	0.469	0.545	0.472	0.211
17	0.0031	0.0017	0.0023	0.0075	0.0004	0.0051	0.0172	0.973	0.966	0.581	0.647	1.049	0.438	0.243
18	0.0013	0.0042	0.0028	0	0.0020	0.0005	0.0048	1.050	0.395	0.633		1.091	0.690	0.399
19	0	0.0104	0	0.0023	0	0	0.0094		0.762		1.020			0.292
20	0.0006	0.0038	0	0	0	0	0.0011	1.101	0.975					0.868
21	0.0104	0	0	0	0	0	0.0021	0.430						0.701
22	0	0	0	0.0023	0	0	0.0013				0.963			0.801
23	0	0	0	0	0	0	0							
24	0	0	0	0.0003	0	0	0				1.254			

Table A3: Proportions-at-age (male, female, and unsexed combined), with CVs, for T. murphyi, by fishing year.

