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EXECUTIVE SUMMARY

Edwards, C.T.T.; Doonan, I.; Anderson, O.F. (2015) Comparison of bycatch estima-
tion for fish species using a ratio estimator and model-based method.

New Zealand Aquatic Environment and Biodiversity Report No. 154. 30 p.

Commercial fisheries in New Zealand often catch species that are not necessarily targeted by the
fishing operation (bycatch). Since this bycatch is not fully recorded it is necessary to estimate the
absolute quantity using observer data, which is collected from a subset of vessels every year. The
observer data can then be used to extrapolate unobserved catches across the remainder of the fishing
fleet. This extrapolation can be based on a simple ratio-based estimate of the catch rate. However
this procedure is prone to bias and is shown here to produce results with a spuriously high level
of accuracy. In this study we compare estimates from a ratio-based approach with a model-based
estimator using data from the ling longline fishery, and scampi and squid trawl fisheries. A simulation
study, parameterised using the empirical data, was first used to examine performance of the estimators;
which were subsequently applied to the empirical data itself. The simulation results illustrated that
a model-based approach is preferable, and reliability of the empirical results are discussed in this
context. Although not intended to provide accurate bycatch estimates, the results of this study are
used to argue that a model-based estimator should be the preferred approach for future work of this
kind.

Project code: ENV2013-01
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1. Introduction

Two approaches have been used to estimate total catches for bycatch species in New Zealand’s
commercial fisheries. For fin-fish bycatch, ratio-based methods have typically been used (e.g.
Anderson, 2013, Griggs & Baird, 2013). The data consist of an assumed known total effort for the
fishery, and catch per effort unit for a subset of observed fishing events occuring on a subset of vessels
fishing in that year. These data can often be stratified in a manner intended to minimise variance of
the ratio estimate within each strata, depending on the distribution of observations across vessels and
the spatial locations of fishing.

If we consider the random variables yi and t [S]i , which refer to the observed bycatch and associated
effort value respectively, for a given fishing event i, then the ratio r is calculated as the ratio of
averages:

r =
∑yi

∑ t [S]i

which is equivalent to the average ratio when t [S]i = 1, but in other situations is generally preferred
over this alternative, since it has lower bias and an approximate normal distribution at large sample
sizes (Barnett, 1991). For a particular strata, the total bycatch N is then estimated assuming a constant
r value across unobserved effort. Denoting the ratio-based estimate of the bycatch as N[R], and the
total effort for each fishing event (observed and unobserved) as t [T ]i , then this can be written as::

N[R] = ∑yi +
(
∑ t [T ]i −∑ t [S]i

)
.r = ∑ t [T ]i .r

A variance around this estimate can be obtained either analytically or more usually via a bootstrap
procedure. Due to data availability, stratification usually takes place at the level of the area, meaning
that the ratio and bycatch are estimated for each FMA and then summed across the fishery. Although
this method is easy to apply, it has a number of drawbacks that will be further described and examined
in this study. For particularly important species therefore, a more intensive model-based approach has
been adopted, for example when estimating the total catches of marine mammals (Abraham, 2008,
Smith & Baird, 2007a,b, Thompson et al., 2013) or birds (Abraham & Thompson, 2011).

For model-based methods a statistical model is used to estimate the expected catch for unobserved
fishing events. Covariate data associated with a particular observation are denoted by the design
matrix x, and consist of spatial and temporal information as well as other covariates such as depth
of fishing or type of fishing gear. For this information to be useful, it must be assumed to exist for
unobserved fishing events also. In general we can write the expected observation as a function of the
design matrix and vector of coefficients (β ) associated with each covariate. This function is denoted
g(.), and is known as the inverse link function. The effort term ti is treated as an offset and therefore
not included in the function arguments. Using this notation we can write our estimate of the total
bycatch as:

E[yi] = g(x′iβ ).t
[S]
i

N[M] = ∑g(x′iβ ).t
[T ]
i

with the summation taken across all fishing effort to give the model-based estimate of the bycatch
N[M]. Note that the recorded bycatch (and associated effort t [S]i ) is used only to parameterise the
model, and not in the final summation when estimating the total N[M]. This is because, for a given
fishing event, only a fraction of the actual gear deployments are ever actually observed. The bycatch
associated with a particular effort t [T ]i is therefore usually unknown and must be estimated, even if
that fishing event was observed.
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2. Modelling approaches for over-dispersed data

Catch data can be represented as a Poisson process when it is assumed that catches occur randomly
in space or time at a constant rate. The Poisson distribution has a single rate parameter λ , which is
equal to both the expectation (mean) and variance. For a given fishing event i, consisting of a single
effort unit, the distribution of observed catch values can therefore be written as:

yi ∼ Poisson(λ ).

This distribution can be used to model catch data using a log-link function: E[yi] = exp(x′iβ ), where
x is the design matrix and β is the vector of regression coefficients. However empirical data rarely
conform to a Poisson distribution because the variance in the response exceeds the expectation. If
the variance V[yi] > λ , the data are over-dispersed and this model is no longer appropriate. Two
alternative models are capable of representing over-dispersed catch data, differentiated by the assumed
distribution behind the over-dispersion process.

2.1. The Poisson-Gamma model

The simplest way to model over-dispersed data is to estimate an additional term that scales the
mean of the distribution to the variance, so that V[yi] = λ .φ , with the expectation unchanged.
This can be extended by assuming that the multiplicative scalar is a random effect designed to
account for unobserved heterogeneity in the data, which is equivalent to the assumption that each
observation is drawn from an independent Poisson distribution. In other words, the expected value
for a particular data record i is unique: E[yi|λi] = λi; with the expectation referring specifically to a
Poisson distribution with rate λi. If λi is assumed to follow a gamma distribution across fishing events
with a shared shape parameter ζ and an expected value of µi, then this can be written as:

yi|λi ∼ Poisson(λi)

λi|ζ ,µi ∼ Gamma(ζ ,ζ/µi).

Similarly we could write λi = µi.εi, in which case εi would be considered a random effect with
distribution εi ∼ Gamma(ζ ,ζ ) and expected value of one. The expected value of λi is denoted
E[λi|µi] = µi = exp(x′iβ ), and is an expectation across the over-dispersion process. Since E[yi|λi] =

exp(x′iβ ).εi, using the law of total expectation we obtain: E[yi] = exp(x′iβ )E[εi] = exp(x′iβ ). Overall,
the unconditional distribution of yi follows a Negative Binomial distribution with parameters (µi,ζ ):

p(yi) =
Γ(ζ + yi)

Γ(ζ ).yi!

(
µi

ζ +µi

)yi
(

ζ

ζ +µi

)ζ

which has an expectation E[yi] = µi and variance V[yi] = µi +µ2
i /ζ .

2.2. The Poisson-LN model

An alternative approach is to assume that λi follows a log-normal (LN) distribution:

yi|λi ∼ Poisson(λi)

λi|µi,σ ∼ LN(µi,σ
2)
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again with µi = exp(x′iβ ). Following a similar argument to that given above, the over-dispersion term
εi is now log-normal and it is convenient to write E[yi|λi] = exp(x′iβ +ei), where ei ∼Normal(0,σ2).
There is no analytical form for the unconditional distribution of yi, but it is useful nevertheless to
report the expectation: E[yi] = exp(x′iβ +σ2/2).

2.3. Including random effects

Fixed and random effects within a statistical model are interpreted differently, and it is on this basis
that they can be distinguished. For fixed effects, the estimated coefficient is of direct interest, whereas
for random effects we are concerned primarily with the distribution of these coefficients. During
inference we often need to incorporate the variation associated with unsampled components of the
population, and this variation is captured by a random effects component to the model. Because of
this distinction fixed and random effects are usually noted separately in the model definition:

µi = exp(x′iβ + z′iγ)

where z is the random effects design matrix and γ is the vector of random effect coefficients. A model
of this type, that includes both fixed and random effects, is known as a general linear mixed model
(GLMM).

3. Model-based estimation and prediction

In this study we assumed that the catch data follow a Poisson-LN probability:

yi|λi ∼ Poisson(λi)

λi|µi,σ ∼ LN(µi,σ
2)

with µi = exp(x′iβ + ln(t [S]i )). Because the over-dispersion term is log-normal we can write E[yi|λi] =

exp(x′iβ + ln(t [S]i ) + ei), where ei ∼ Normal(0,σ2). The unconditional expectation is therefore:
E[yi] = exp(x′iβ + ln(t [S]i )+σ2/2).

Including random effects the full log-linear predictor is written as:

ln(µi) = x′iβ + z′iγ + ln(t [S]i )

with ln(t [S]i ) treated as an offset term. Parameterisation then involves the estimation of β and γ ,
as well as the variance terms σ2

[γ] and σ2 that describe the (log-normal) distributions of γ and ei

respectively.

3.1. Available estimation procedures

The strength and difficulty inherent to any GLMM is the need to distinguish between variance of
the random effect terms and the over-dispersion. This is still an active area of statistical research
and a variety of approaches exist. The R-packages lmer4 and hglm can be used to fit Poisson-LN
and Poisson-Gamma models, using maximum likelihood. However because of the approximations
otherwise required to quantify the error, a Bayesian approach is preferable. A negative binomial
GLMM can be fitted using Bayesian methods with glmmADMB or coded directly, usually as a
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Poisson-Gamma process, in bugs or stan. Alternatively, a Poisson-LN can be fitted by MCMC
using MCMCglmm.

In practice, the Poisson-Gamma and Poisson-LN distributions are similarly capable of modelling
over-dispersed data, and although previous work in New Zealand has tended to assume a Poisson-
Gamma process, coded in winbugs, for this study the Poisson-LN was used instead. This choice
was based largely on availability of the R-package MCMCglmm, which proved to be much faster than
an equivalent model coded in either winbugs or rstan. Validation of the package was performed
by comparing fitted estimates from simulated data with those obtained using lme4::glmer, and
both were found to produce equivalent results.

The R-package MCMCglmm executes an efficient Bayesian estimation procedure for Poisson-LN
models. A Bayesian approach is desirable since it provides a better representation of the uncertainty
during prediction, without the need for asymptotic approximations of the type required for a maximum-
likelihood based approach.

3.2. Posterior prediction

Following a Bayesian fit to the data the parameterised model can then be used to predict the bycatch
occurring at unobserved fishing events. In this context posterior predictive simulation can be used to
produce a distribution of estimated bycatch values that represent uncertainty around the true bycatch
value. This is most easily described by referring back to the original model formulation, with a
subscript i referring to a data record (fishing event) and an additional subscript p used to denote a
particular sample from the posterior:

ỹip ∼ Poisson(λip)

λip ∼ LN(µip,σ
2
p)

where ỹi represents a simulated observation generated by: i) sampling from the posterior distributions
of β̂ , γ̂ , σ2

[γ] and σ̂2; ii) calculating a value for µip using the log-linear predictor; iii) randomly
generating a value for λip from the log-normal distribution parameterised by µip and σ2

p ; and,
iv) randomly generating ỹip from a Poisson distribution with mean λip. This procedure captures
uncertainty in both the estimation process, the random effect and the random nature of over-dispersion.
However posterior prediction was not performed in this study, since our main intention was to compare
estimators. When calculating confidence limits we therefore used the percentiles of the posterior
probability (the credibility intervals), which can be compared more directly to the confidence intervals
produced by the ratio-based estimator.

4. Data and methods

Three fisheries were selected for analysis in this study, namely the ling longline (Anderson, 2014),
scampi trawl (Anderson, 2012) and arrow squid trawl (Anderson, 2013) fisheries. The analysis
for each fishery consisted of two parts. First, we simulated bycatch and observational data from
a Poisson-LN process assuming a distribution of fishing effort and observer sampling across time,
space and vessels that matched the empirical data. To this data we applied both ratio and model-based
estimators and compared their predictive performance. Second, we applied both methods to the
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Table 1: Parameter specifications for simulation of catch rate data. Catch rates shown are
an average for the specified area across all empirical data, in kilograms per unit of fishing
effort. These values were used to create the initial catch rate vector I0.

Ling Squid Scampi
Area Catch rate Area Catch rate Area Catch rate

(kg/set) (kg/trawl) (kg/trawl)
BNTY 321.57 AUCK 413.96 AUCK 74.35
CAMP 132.15 CHAL 594.50 BANK 279.48
COOK 240.84 CHAT 820.69 CHAT 466.25
LIN1 54.49 NRTH 442.79 NRTH 150.38
LIN2 572.34 PUYS 589.83 PUYS 396.78
LIN3 139.25 WAIR 435.03 SNAR 54.62
LIN4 83.44 WCSI 194.00 SUBA 76.96
LIN7 78.31
PUYS 151.10

Vessel random effect (σ2
[γ])

Ling 0.78 Squid 0.20 Scampi 1.16

empirical data itself. Comparison of these empirical results could then be informed by the simulation
study.

In the ling, scampi and squid fisheries being examined, bycatch estimates typically consider groups
of species, classified as those within the Quota Management System (QMS), those that are not,
and invertebrates. For this study we consider only a single group, namely the non-QMS species.
This group is the primary focus of Anderson (2012, 2013, 2014) and was considered sufficient for
current purposes, since our intention was to compare alternative estimators, rather than provide actual
estimates of the bycatch for these fisheries. Effort was measured as the number of sets (for ling), or
the number of trawls (for scampi and squid). Therefore ti refers to the number of sets/trawls for data
record i. For ling, Anderson (2014) actually used the number of hooks rather than the number of sets,
and so we expect our ratio-based estimates of the bycatch to be different.

4.1. Data simulation

The simulation of bycatch and associated observational data required a representation of the underly-
ing catch rate dynamics over time and space. For each fishery the initial catch rate vector I0, with
length equal to the number of areas (as defined by Anderson, 2012, 2013, 2014), was set equal to the
average catch rate for that area across all the empirical data (Table 1). The catch rate dynamics by
year t then proceeded according to a simple random walk process:

I(t+1) = TIt

with T representing a diagonal matrix with elements sampled from a multi-variate log-normal
distribution with arbitrarily chosen parameters σ = 0.1 and ρ = 0.8 (Code Listing A1). This
procedure was used to generate correlated dynamics over time and space.

Given the average catch rate vector for a particular year It , a Poisson-LN process was then used to
simulate the bycatch assuming a vessel random effect (Code Listing A2). The vessel random effect
variance was calculated from the empirical distribution of mean catch rates across all sampled vessels
(Table 1). The bycatch data were then sampled at random according to the distribution of observer
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sampling effort. No attempt was made to simulate the effect of other covariates such as depth or
season, which are known to influence the bycatch rate (e.g., Anderson, 2013). However the vessel
random effect can be considered as an integration over these other covariate effects, without them
being explicitly included. Although the model-based method could have made use of additional
covariate information, it was considered sufficient for the model to estimate the vessel random effects
directly. This greatly simplified the experimental design and analysis. We nevertheless note that
covariate data could improve the performance of model based methods, although this will not always
be the case, being dependent on the realised quality of covariate data available.

In summary, our simulation procedure was able to produce correlated bycatch and observational data,
in a manner that was consistent with the actual relative distribution of observational effort across the
fisheries. It is the relative distribution of fishing and sampling effort that is likely to determine the bias
of ratio-based estimators (see Appendix I), and because the data will be consistent across iterations,
this simulation design should allow bias to be detected from the residual difference between simulated
and estimated bycatch values. Two hundred simulations were performed, with the same simulated
data used to compare the two estimation methods.

4.2. Estimation procedures

For ratio-based estimation, the ratio r was calculated directly from the empirical data for each year j
and area k, giving the estimated bycatch as:

N̂[R]
j = ∑

k
r jk.t

[T ]
jk

Confidence intervals were obtained via a similar procedure to that described by Anderson (2012, 2013,
2014). This calculation involved a nested bootstrap by vessel, meaning that for each combination
of j and k, vessels were sampled, and then observations within each vessel, yielding r jkb and N[R]

jb ,
where b refers to a particular bootstrap iteration. Confidence intervals were obtained as:(

N̂[R]
j −δ , N̂[R]

j −δ

)
where δ and δ are the upper and lower 95th percentiles respectively of the distribution of N[R]

jb − N̂[R]
j

(Rice, 1995). This procedure differs slightly from that executed by Anderson (2012, 2013, 2014), but
the results produced were shown to be almost identical.

In many cases there were insufficient data to calculate r jk directly, which was considered the case
if there were less than 25 data records. As an alternative, the ratio calculated using all the data
for that year (i.e. including all areas) was substituted for r jk, provided there were more than 50
records available, otherwise the ratio was calculated using all the data for that area (i.e. including all
years).

The model-based estimate of bycatch was calculated by first fitting a log-linear model to the observed
data using MCMCglmm (Code Listing A3):

ln(yi) = x′iβ + z′iγ + ln(t [S]i )+ ei

with area and time fixed effects β , random effects γ ∼ Normal(0,σ2
[γ]) and over-dispersion e ∼

Normal(0,σ2). The bycatch N was calculated as the marginal expectation (Code Listing A4):

E[Ni] = exp
(

x′iβ + ln(t [T ]i )+σ
2
[γ]/2+σ

2/2
)
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noting that in this case the design matrix x refers to the complete commercial data, rather than the
observer data only. For each fishing year the total bycatch was then calculated as:

N jp = ∑
i

Nip

where the summation is across data records in year j, and the subscript p refers to a particular
sample from the posterior distribution. This yields a posterior distribution of N j values for each
year, from which we obtained N̂[M]

j as the posterior median, and credibility intervals as the 95th
percentiles.

5. Simulation Results

The simulation results are summarised by the residual distributions in Figure 1. The most notable
feature of these results is that the ratio-based estimate is often biased, whereas the central tendency of
the model-based estimates is close to the simulated value. The simulation study was designed so that
the simulated data share important features of the empirical data, namely a consistent area-specific
and realistic effect size across iterations, a realistic vessel random effect variance, and a relative
observer sampling distribution that matched the empirical data. The simulation results demonstrate
that under these conditions the ratio-based estimates have low accuracy. This can be most clearly
seen for squid (Figure 1c), for which the ratio-based results are often underestimates. A similar
feature is observed for ling (Figure 1a), but is less obvious for scampi (Figure 1b), particularly in
recent years. In general, the model-based estimates appear to have a lower tendency towards bias,
more often giving a result close to the simulated value.

Alongside accuracy, an important consideration when evaluating estimator performance is quantifica-
tion of the uncertainty. This was measured from the proportion of times that the estimated confidence
bounds enclose the true simulated value. This probability is referred to as a p-value, since it is the
probability of a Type 1 statistical error (i.e. the probability of incorrectly concluding that the estimated
value is different from the simulated value). Therefore smaller p-values generally indicate better
performance. More specifically, we would expect p-values of approximately 5% if the confidence
intervals are being estimated accurately, since the intervals should enclose the true value 95% of the
time. The results of this calculation are given in Table 2. In every case the p-value is smaller for
the model-based estimator, indicating that this method is more likely to produce confidence bounds
that enclose the true value. This is rarely the case for the ratio-based estimator, indicating that the
confidence intervals produced by this method are likely to be too narrow, and for this reason the
model-based estimator is to be preferred.

6. Empirical Results

The estimators of bycatch for each method, for each fishery are illustrated in Figure 2 and Tables 3, 4
and 5. For ling, the ratio-based estimates are often an order of magnitude less than the model-based
estimates and have much tighter confidence intervals. From the simulation results in Figure 1a, it
appears that the ratio-based estimator has a negative bias, giving values that tend to be underestimates.
From Table 2a it is also clear that the confidence intervals are likely to be too narrow. For both these
reasons, the model-based estimates are preferable.
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Figure 1: Distribution of log-residuals ln(N̂/N) for ratio and model-based estimators of
bycatch applied to simulated data, where N and N̂ refer to the simulated and estimated
bycatch respectively. The residual distribution should be close to zero (indicated by the
vertical red line) if the estimator is performing well.
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Table 2: Comparative performance of ratio and model-based estimators of bycatch, using
simulated data. The p-value refers to the proportion of times that the 95% confidence or
credibility intervals for an estimate do not include the simulated value. We would expect a
p-value of approximately 5% if the uncertainty intervals are being estimated correctly: if
p > 0.05 the intervals are too narrow; if p < 0.05 the intervals are too wide.

(a) Ling

Fishing p-value
year Ratio Model
1993 0.945 0.160
1994 0.945 0.100
1995 0.885 0.200
1996 0.695 0.110
1997 0.920 0.160
1998 0.830 0.100
1999 0.715 0.060
2000 0.675 0.045
2001 0.750 0.235
2002 0.885 0.190
2003 0.765 0.060
2004 0.815 0.090
2005 0.890 0.110
2006 0.855 0.200
2007 0.785 0.120
2008 0.850 0.030
2009 0.885 0.070
2010 0.950 0.175
2011 0.850 0.045
2012 0.950 0.030
Average 0.842 0.114

(b) Scampi

Fishing p-value
year Ratio Model
1991 0.395 0.135
1992 0.360 0.180
1993 0.675 0.135
1994 0.220 0.085
1995 0.590 0.010
1996 0.685 0.130
1997 0.605 0.025
1998 0.245 0.070
1999 0.345 0.045
2000 0.380 0.030
2001 0.505 0.040
2002 0.465 0.045
2003 0.320 0.045
2004 0.485 0.065
2005 0.590 0.045
2006 0.325 0.025
2007 0.235 0.010
2008 0.260 0.010
2009 0.230 0.005
2010 0.480 0.020
Average 0.420 0.058

(c) Squid

Fishing p-value
year Ratio Model
1991 0.560 0.100
1992 0.750 0.150
1993 0.480 0.235
1994 0.665 0.220
1995 0.760 0.255
1996 0.795 0.160
1997 0.765 0.235
1998 0.765 0.220
1999 0.840 0.180
2000 0.810 0.210
2001 0.540 0.155
2002 0.690 0.215
2003 0.470 0.185
2004 0.600 0.225
2005 0.470 0.215
2006 0.835 0.190
2007 0.840 0.200
2008 0.735 0.130
2009 0.180 0.115
2010 0.725 0.135
2011 0.685 0.100
Average 0.665 0.182

For scampi, the bias expected from application of the ratio-based method is less obvious (Figure 1b),
and Table 4 shows that both methods produce comparable estimates of the total bycatch (see also
Figure 2b). There is a clear difference however in the confidence intervals, which are much wider
for the model-based estimator. From the simulation study (Table 2b) we know that the confidence
intervals for the ratio-based method are likely to be conservative. For squid, the confidence intervals
for both methods are more similar. However the estimates of bycatch are slightly different (Table
5 and Figure 2c) and we suspect that the ratio-based results are underestimates, based on the bias
observed in Figure 1c.

7. Conclusions

This study has compared the performance of ratio and model-based estimators of bycatch using data
from three example fisheries. A simulation study was used to indicate likely performance of each
method, followed by application to the empirical data. In all cases it was shown that the model-based
estimator should be preferred, since it appears to be less prone to bias and capable of producing a
more reliable representation of uncertainty.

The results are not intended to supplant previous estimates of the bycatch made by Anderson (2012,
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(c) Squid

Figure 2: Estimates of non-QMS fish bycatch from empirical data using ratio and model-
based estimators. Values are given on a log scale in units of tonnes, with 95% confidence
intervals shown.
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Table 3: Comparative estimates of total non-QMS bycatch in tonnes from the ling longline
fishery using ratio and model-based estimators.

Fishing Total bycatch N̂ and 95% confidence intervals
year Ratio Model
1993 2965 [2727;3199] 16438 [1205;342109]
1994 243 [215;266] 2480 [152;94772]
1995 1024 [944;1091] 10551 [1755;117800]
1996 661 [409;853] 4213 [797;40446]
1997 439 [366;534] 1974 [305;23713]
1998 469 [343;583] 218 [41;1805]
1999 1203 [730;1822] 3307 [466;28681]
2000 933 [848;1067] 342 [55;2928]
2001 794 [672;873] 2274 [642;11599]
2002 652 [590;709] 2393 [503;14516]
2003 679 [620;728] 3917 [1118;21635]
2004 666 [431;731] 2501 [690;13512]
2005 566 [500;612] 2861 [546;25180]
2006 1153 [943;1366] 3077 [629;23386]
2007 863 [733;969] 5841 [1464;36617]
2008 719 [599;769] 3365 [770;23889]
2009 866 [774;957] 5628 [1052;44929]
2010 538 [498;574] 3923 [350;59224]
2011 1104 [888;1269] 7516 [949;79620]
2012 369 [342;398] 4289 [433;66357]

2013, 2014), simply to provide a comparative representation of performance. Our ratio-based estimate
of the confidence intervals was slightly different from that applied previously, specifically sampling
vessels rather than vessel trips during the bootstrap. This was necessary to allow the same estimator
to be applied to both simulated and empirical data, and would have led to slightly different estimates
of the confidence bounds. Discrepancies were observed between our ratio-based estimates of the
bycatch and those reported by Anderson (2012, 2013, 2014). For ling, this was because we used the
number of sets rather than the number of hooks to quantify effort. For scampi and squid the reasons
are unclear, but the discrepancies themselves are small.

Based on the results presented here and in Appendix I we would argue that the model-based approach
could be usefully implemented to provide actual estimates of the bycatch, particularly given the
unbalanced sampling design associated with observer data collected from real fisheries. The model-
based approach could be extended through the inclusion of other covariates, which will improve
performance if the covariate data are of good quality. This is an aspect of the model-based approach
that has not been considered in the current study, and whether these covariate data are reliable enough
for inclusion in a model-based application will have to be assessed on a case-specific basis. The
current study provides an argument for further work in developing this approach.

8. Acknowledgements

This work was funded by the Ministry for Primary Industries (Wellington, New Zealand), under
project code ENV2013-01, and received a helpful review from Ian Tuck (NIWA, New Zealand).

12 l Comparative bycatch estimates Ministry for Primary Industries



Table 4: Comparative estimates of total non-QMS bycatch in tonnes from the scampi
fishery using ratio and model-based estimators.

Fishing Total bycatch N̂ and 95% confidence intervals
year Ratio Model
1991 2288 [1707;2539] 2984 [1739;5318]
1992 2902 [2542;3112] 2527 [1617;3919]
1993 4080 [2940;5015] 4449 [2530;8249]
1994 2674 [1822;3446] 2372 [1601;3699]
1995 3351 [3195;3527] 4275 [2229;8082]
1996 4197 [3839;4522] 5338 [2652;10697]
1997 1503 [1350;1633] 1661 [881;3276]
1998 1169 [776;1574] 1661 [1005;2788]
1999 1898 [1304;2512] 1443 [870;2422]
2000 2655 [2302;2952] 2326 [1359;3957]
2001 3062 [2160;3645] 2525 [1401;4649]
2002 3544 [2548;4113] 4246 [2626;6718]
2003 1857 [1578;2169] 1999 [1214;3420]
2004 1773 [1561;1978] 1592 [936;3002]
2005 2508 [1995;3106] 2252 [1033;4809]
2006 1167 [956;1252] 1705 [918;3169]
2007 2104 [1807;2353] 2987 [1720;5574]
2008 1820 [1446;2285] 2465 [1358;4550]
2009 1183 [1065;1264] 1688 [896;3201]
2010 2263 [2092;2421] 2325 [1286;4343]

Table 5: Comparative estimates of total non-QMS bycatch in tonnes from the squid fishery
using ratio and model-based estimators.

Fishing Total bycatch N̂ and 95% confidence intervals
year Ratio Model
1991 154 [29;229] 962 [387;2891]
1992 275 [109;410] 1449 [546;4172]
1993 298 [75;449] 1252 [615;2708]
1994 304 [99;469] 617 [257;1543]
1995 203 [62;309] 380 [135;1195]
1996 196 [160;230] 798 [318;2142]
1997 271 [123;392] 487 [250;1017]
1998 79 [24;124] 407 [172;890]
1999 455 [102;725] 952 [483;1940]
2000 275 [170;358] 1460 [697;3192]
2001 1143 [343;1604] 3033 [1759;5433]
2002 866 [508;1161] 1349 [705;2688]
2003 1431 [1009;1788] 4208 [2479;7908]
2004 268 [144;368] 865 [475;1666]
2005 2114 [1186;2812] 2077 [1240;3782]
2006 668 [294;938] 2496 [1362;4754]
2007 1365 [683;2029] 1366 [732;2771]
2008 360 [247;483] 1768 [916;3551]
2009 463 [-54;732] 603 [360;1041]
2010 379 [147;543] 919 [483;1798]
2011 690 [501;855] 1469 [843;2548]
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Appendix I: Justification for a model-based estimator of fish by-
catch

Introduction

This appendix aims to compare the performance of ratio and model-based estimates of bycatch
within a simulation framework. To design an appropriate study it is first worthwhile to describe some
properties of ratio-based estimators, when they are likely to perform well, and when they are likely to
perform poorly. Alternative modelling approaches will then be described, followed by the simulation
study itself.

Accuracy of ratio-based estimators

The accuracy of an estimator can be broken down into the precision, synonymous with the variance
of the estimator, and bias, which is a measure of the difference between the central tendency of the
estimator and the true population value. The properties of ratio-based estimators can suggest the
conditions under which accuracy is likely to be compromised, and we investigate these properties
here. To simplify this outline, we assume that yi and ti are independent and define T and S as the total
fishing effort, and the total observed fishing effort respectively, with corollaries Tk and Sk that are
specific to strata k.

We first note that since the variance of the effort term is zero (i.e. measured without error), the ratio
is an unbiased estimate with variance V[r]≈ V[y.]/S (Kendall & Stuart, 1977). Since N[R] = T.r we
can write:

V[N[R]]≈ T 2

S
.V[y.]

This indicates quite simply that variance in the estimate of N[R] is inversely related to the observed
fishing effort. In other words, the more observations the more precise the estimate.

We next define an analytical formula that describes the expected bias B, which can be introduced
by ratio-based methods when applied to data that have not been appropriately stratified, usually as a
result of only partial observer coverage. Consistent with current practice in New Zealand fisheries, we
assume that the ratio estimator is stratified at the level of the area and investigate how an unbalanced
sample allocation across areas creates a bias in the bycatch estimate.

We start with an assumption that observed catch is described perfectly by a series of coefficients
β :

yik = g(x′iβ ).t
[S]
ik

Nk = T.∑g(x′iβ ). f
[T ]
ik

where f [T ]ik = t [T ]ik /T is the proportion of the total effort T that correspond to event i in area k. For the
ratio-based method, we assume an area-level stratification and obtain the bycatch estimate as:

N[R]
k = Tk.rk = Tk.

∑yik

∑ t [S]ik

= Tk.
∑g(x′iβ ).t

[S]
ik

∑ t [S]ik

= Tk.
S
Sk

∑g(x′iβ ). f
[S]
ik
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where f [S]ik = t [S]ik /S. We are now in a position to write down the bias as:

Bk = N[R]
k −Nk

= Tk
S
Sk

∑g(x′iβ ). f
[S]
ik −T.∑g(x′iβ ). f

[T ]
ik

where the summations on the left and right refer to the observed and total fishing effort respectively.
However if we set f [S]ik = 0 for unobserved tows and define:

hk =
Tk

T
S
Sk

then:

Bk = T.hk.∑g(x′iβ ) f [S]ik −T.∑g(x′iβ ). f
[T ]
ik

= T.∑g(x′iβ ).(hk. f
[S]
ik − f [T ]ik )

= T.∑g(x′iβ ).

(
Tk

T
S
Sk
.
t [S]ik
S
−

t [T ]ik
T

)
which simplifies to:

Bk = Tk.∑g(x′iβ ).

(
t [S]ik
Sk
−

t [T ]ik
Tk

)
The predicted bias is the sum across areas B = ∑Bk and is therefore a function of the difference
between the proportion of effort observed and the proportion of the total fishing effort, for each
fishing event, summed over the fishing events in each area.

From the above derivation we can see that for bias to occur t [S]ik /Sk 6= t [T ]ik /Tk. Intuitively, this equates
to a difference between the distribution of actual and observed tows across strata. As this difference
increases, we expect the bias to also increase.

The magnitude of the bias will also be partly determined by the correlation between the sign of
t [S]ik /Sk− t [T ]ik /Tk and the sign of g(x′iβ ). If they are not correlated then there will be a partial cancelling
out of bias effects since the overall sign of the bias at the ik level is random. However, should the
signs of these terms be highly correlated, then they will have a reinforcing effect, since most will
have the same sign (either positive or negative).

From these analytical results we can obtain two important insights concerning the reliability of
ratio-based estimators of bycatch. First, as the sample size gets smaller, the precision will decrease.
Second, as the distribution of sampled fishing events becomes increasingly unrepresentative, the
bias will likely also increase. When comparing the performance of ratio-based methods against
model-based alternatives, we will therefore include scenarios of low data quantity and an unbalanced
sampling design.

Simulation Testing

A simulation experiment was carried out to compare performance of model-based bycatch prediction
with simple ratio estimators. The study consisted of data simulation under a Poisson-LN process
(Code Listing A5) and estimation of the fixed effects and associated bycatch using each of the
methods. These estimates could then be compared to the simulated values. Iteration of this process
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allowed visualisation of the precision and bias of each estimator under a variety of data scenarios.
The precision is defined as variation in the estimated value, whereas the bias concerns tendency of the
estimator to converge on a value that is different from the true value as more data are collected.

The data scenarios themselves were primarily based on the quantity of data and distribution of
sampled vessels between areas, both of which are expected to affect performance of the estimators
(see “Accuracy of ratio-based estimators” above). Specifically, performance was expected to decrease
if few vessels are sampled and if those vessels are clustered into a particular area. However we
further specified whether or not coefficient values were held constant across the data iterations. This
is because when the bias and effect-size are uncorrelated, they will tend to cancel out over multiple
iterations. By fixing the input values, the iterated simulations can be more easily used to ascertain
the bias associated with estimation, since error will be in a consistent direction. For randomised
coefficient values, an impression of precision can be obtained.

We made no attempt to include the effects of additional covariates in the simulation, such as depth or
the number of hooks (e.g. Anderson, 2014). This would have markedly complicated the analysis,
without necessarily improving the quality of our conclusions.

Experimental design

The experimental design explored all combinations of different levels of data sampling (two levels)
and data quantity (two levels), and whether the true area coefficient values used to simulate the
data were fixed or randomly generated. For each of these eight combinations, 200 simulations were
executed; and for each simulated dataset, both ratio and model-based methods were applied. Specific
details regarding this experimental design are given here.

Dimensions
The simulation study assumed two spatial areas: A1, A2; represented by the fixed effect coefficients
(β1,β2) and a random effect for 20 vessels (γ1, . . . ,γ20), with each vessel assigned twenty fishing
events. Each fishing event consisted of one effort unit (i.e. ti = 1 for all i). The inclusion of a random
vessel effect captures the influence of other covariates that may determine the catch rate, without
needing to represent these covariates explicitly. This means that performance of the model-based
estimator will be weaker than otherwise had covariate data been explicitly included, but the overall
analysis is simplified greatly.

Data quantity
According to the above dimensions, fishing under 40 area/vessel combinations were simulated and
sampled at different intensities:

• High data: 38 area/vessel combinations were sampled, giving 18 vessels sampled fishing across
both areas;

• Low data: only 22 of these combinations were sampled, giving two vessels sampled across
both areas.

For each area/vessel combination sampled, it was assumed that all fishing events were included.
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Data sampling
The sampled area/vessel combinations were distributed according to the following designs:

• Unbalanced: all the vessels in A2 were sampled, but only a subset of vessels in A1 (18 and two
for the high and low data scenarios respectively);

• Null: the sampled combinations were distributed evenly between A1 and A2.

Coefficients
Area specific input coefficients were either fixed across iterations, or randomly sampled. Under
random sampling we assumed that {β1,β2} ∼Uni f orm(1,3). When fixed, we assumed that β1 = 2.5
and β2 = 1.5. Random vessel effects were sampled from a normal distribution: {γ1, . . . ,γ20} ∼
Normal(0,σ2

[γ]); with σ2
[γ] = 1. When area-specific coefficients were fixed, random effects were also

fixed, being sampled once and held constant across iterations.

Iterations
Bycatch data were generated for all 40 area/vessel combinations using the simulator in Code Listing
A5, iterated 200 times, once with fixed.linear.predictor set to FALSE and once with it set
to TRUE; this determined whether fixed or randomly generated β values were used. These iterations
were then sampled according to the data quantity and sampling designs given above, meaning that
each scenario used a consistent set of simulated data.

Estimation methods

For each iterated data sample generated, bycatch (N) and fixed effect coefficients (β1,β2) were
estimated using ratio and model-based methods. For the ratio-based method, the estimated bycatch
was calculated as the average catch rate per area multiplied by the summed fishing effort:

E[yk] = ȳk

N̂[R] = ∑
k

(
E[yk].∑

i j
ti jk

)
where i, j and k refer to the fishing event (equivalent to a single data record), vessel and area
respectively. The area specific coefficient, for comparison to the model-based estimate, was calculated
as βk = ln(ȳk)−σ2

k /2, where σ2
k is the residual variance for that area: V[ln(N[R]

i jk/N̂[R]
i jk )].

The model-based estimate of bycatch was calculated by first fitting a log-linear model to the observed
data using MCMCglmm (Code Listing A6):

ln(yi) = x′iβ + z′iγ + ei

The catch rate was then calculated as the marginal expectation across a log-normal over-dispersion
process (Code Listing A6):

E[y jk] = exp
(
βk + γ j +σ

2/2
)

which is specific to the particular area/vessel combination, so that the bycatch is estimated as:

N̂[M] = ∑
k

∑
j

(
E[y jk].∑

i
ti jk

)
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This estimator specifically makes use of the estimated random effect coefficient γ j. Given the
experimental design it could equally have been considered a fixed effect since every vessel is sampled
at least once. However it is treated as a random effect here to maintain consistency with a more
realistic scenario in which only a subset of vessels are sampled. In this latter case an estimate of the
variance across vessels is important for bounding the uncertainty during prediction, and therefore
treatment of the vessel effect as random is more appropriate.

Performance measures

The accuracy of ratio and model-based approaches were compared with respect to their precision and
tendency towards bias. Precision was measured using the mean residual error:

MREθ =

√
1
n ∑(θ −E[θ ])2

with residuals measured on a log-scale, so that θ is one of ln(N/N̂), ln(β1/β̂1) or ln(β2/β̂2), and the
expectation taken as an average across iterated residual values. Note that this statistic is equivalent
to a coefficient of variation. For estimates of bias, we are concerned with detecting a consistent
directional tendency in the distribution of estimated values. A suitable statistic for this purpose is the
mean prediction error:

MPEθ =

∣∣∣∣∑(θ −E[θ ])
∑θ

∣∣∣∣
where θ is one of N, β1 or β2 and the corresponding E[θ ] is N̂, β̂1 or β̂2.

Simulation results

The evaluation results do not separate into clear categories, but for ease of presentation and discussion
we make a distinction between simulations conducted with randomly generated β coefficients, and
those conducted with fixed β coefficients. The former category is arguably more instructive for
questions concerning precision, whereas the latter is more pertinent to the bias. To illustrate com-
parative precision, we therefore focus on data generated using randomly sampled input coefficients
under conditions of high and low data quantity, and with performance summarised using the MRE
diagnostic. For bias, the focus is on data generated using fixed input coefficients under Unbalanced
and balanced (Null) sampling distributions, and compared using the MPE diagnostic.

Precision

Comparative precision of the two methods is illustrated in Figure A1, which shows the correlation
between simulated and estimated values of the bycatch N, and the residual distribution, both plotted
on the log-scale. Results have been combined over the unbalanced and null sampling designs but are
shown separately for the high and low data scenarios. Overall there is a close correlation between
simulated and estimated values, but from the residual distribution it can be clearly seen that the
relative precision of each method is dependent on the quantity of data. As expected, the ratio-based
method becomes less precise when there are fewer data. This observation is reflected in the MRE
statistic (Figure A2a). For the high data scenario, the ratio-based method performs well. Because
vessel effects are sampled from the same log-normal distribution, their effects average to zero on
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Table A1: Complete list of simulation testing results, showing the mean residual error
(MRE) and mean prediction error (MPE) diagnostics, for estimated area specific coefficients
(β1 and β2) and total bycatch values (N). Smaller MRE values indicate better precision, and
smaller MPE values indicate a smaller bias.

(a) Randomly generated input coefficients

Parameter Sampling Data MRE MPE
design quantity Model Ratio Model Ratio

β1 Null High 0.108 0.108 0.008 0.015
Null Low 0.121 0.132 0.009 0.014
Unbalanced High 0.111 0.114 0.008 0.010
Unbalanced Low 0.147 0.328 0.011 0.057

β2 Null High 0.109 0.104 0.003 0.016
Null Low 0.118 0.126 0.004 0.004
Unbalanced High 0.109 0.100 0.000 0.018
Unbalanced Low 0.108 0.100 0.003 0.018

N Null High 0.044 0.050 0.010 0.006
Null Low 0.058 0.089 0.017 0.019
Unbalanced High 0.045 0.056 0.003 0.013
Unbalanced Low 0.088 0.267 0.002 0.041

(b) Fixed input coefficients

Parameter Sampling Data MRE MPE
design quantity Model Ratio Model Ratio

β1 Null High 0.024 0.015 0.048 0.048
Null Low 0.033 0.018 7 0.059 0.120
Unbalanced High 0.025 0.016 0.050 0.028
Unbalanced Low 0.061 0.033 0.047 0.215

β2 Null High 0.043 0.023 0.078 0.090
Null Low 0.061 0.030 0.060 0.009
Unbalanced High 0.040 0.021 0.079 0.113
Unbalanced Low 0.044 0.021 0.074 0.113

N Null High 0.046 0.004 0.005 0.049
Null Low 0.059 0.025 0.005 0.108
Unbalanced High 0.047 0.011 0.005 0.050
Unbalanced Low 0.111 0.085 0.003 0.167
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(b) Low data scenario

Figure A1: Predicted bycatch diagnostics for simulated data iterations, combined across
sampling designs and assuming high and low data scenarios with randomly generated input
coefficients. The correlation shows the relationship between ln(N) and ln(N̂), where N and
N̂ refer to the simulated and estimated bycatch respectively. Points close to the line indicate
that simulated and estimated values are similar. The residual distribution shows a probability
density plot of ln(N/N̂), which should be close to zero if the estimator is performing well.

the log-scale; and so provided enough vessels are sampled in each area the ratio-based method will
be accurate. However if the sampling intensity is decreased, then precision of the estimator also
decreases, and in the low data scenario precision of the model-based estimator is superior.

The patterns observed in Figure A1 and Figure A2a can be examined in more detail in Table A1a.
For the β coefficients, MRE values are around 10%. For estimates of N, MRE values are around
4% for the High data scenarios and slightly higher for the Low data scenarios. The model-based
estimator has the lower coefficient of variation (MRE) for N, although for the High data scenarios
this difference is only about 1%. For the Low data scenarios there is a particularly obvious difference
between estimators when the sampling design is unbalanced, with MRE [M] much less than MRE [R].
A superior performance of the model-based method at a Low data quantity (Figure A2a) is therefore
largely due to the fact that it can outperform the ratio-based method when the design is Unbalanced.
When the sampling design is balanced (Null), and there are a lot of data, precision of the ratio-based
method is very similar.

From Table A1a it can be summarised that both methods lose precision with less data, but the effect
is further compounded depending on whether or not sampling is balanced. For an unbalanced sample
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(a) Comparative precision for high and low data scenarios measured using the mean residual error
(MRE). Results are integrated over unbalanced and null sampling designs and assume randomly
generated coefficients for the simulated data. Smaller MRE values indicate better precision.
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(b) Comparative bias for unbalanced and balanced (null) sampling designs measured using the
mean prediction error (MPE). Results are integrated over high and low data scenarios and assume
fixed input coefficients for the simulated data. Smaller MPE values indicate a smaller bias.

Figure A2: Comparative precision and bias of ratio and model-based estimators of the area
specific coefficients (β1 and β2) and total bycatch values (N).

design there is a much more pronounced loss of accuracy for the ratio-based approach. This is
responsible for the large differences in precision observed in Figure A2a. If only a small fraction of
the vessels in one particular area are sampled, then they are unlikely to be representative of the overall
bycatch rates in that area. In this example, very few vessels were sampled from A1, resulting in an
inaccurate estimate for the β1 coefficient, in turn leading to an inaccurate estimate of the bycatch.
For the model-based method however, information on the vessel effects can be shared across areas if
available, making it less susceptible to the sampling design.

Bias

By keeping the fixed effects constant, directional error is more easily observed, and this can be seen
in Figure A3. Even though the effect size is small, the ratio-based method is clearly biased, since the
residual distribution has a central tendancy that has shifted away from zero. Figure A3 illustrates
that an Unbalanced sampling design increases bias for the ratio based method, and the bimodal
residual distribution demonstrates the componding effect of data quantity, with less data leading to an
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(a) Balanced (null) sampling design
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(b) Unbalanced sampling design

Figure A3: Predicted bycatch diagnostics for simulated data, combined across high and
low data scenarios and assuming balanced and unbalanced sampling designs with constant
input coefficients. The correlation shows the relationship between ln(N) and ln(N̂), where
N and N̂ refer to the simulated and estimated bycatch respectively. Points close to the line
indicate that simulated and estimated values are similar. The residual distribution shows
a probability density plot of ln(N/N̂), which should be close to zero if the estimator is
performing well. Note the difference in scale compared to Figure A1.

increased bias. The influence of data quantity on bias can be clearly seen in the MPE diagnostics
reported in Table A1b. In general, the model-based method has only a small bias in estimates of N,
being less than 1% for all scenarios. In contrast, the ratio-based method has a bias in the region of
5% to 15% (Table A1b), with the larger values associated with the Low data scenarios.

The MPE values in Figure A2b summarise the results in Table A1b. The ratio-based method produces
a biased estimate of β1, which is translated into a biased estimate of the bycatch. In contrast, the
model-based approach is not only less biased, but also more resilient to the sampling design, giving
similar results under the Unbalanced and Null sampling scenarios. Figure A3 shows how accuracy of
the method is reasonably consistent across sampling scenarios, which is an attractive property of the
model-based approach.

The simulations conducted so far have only assumed either fixed or random coefficients, and so to
further investigate the different propensities towards bias we conducted a secondary analysis, again
with fixed area-specific coefficients, but fixed across a range of values. This allowed us to examine the
bias associated with each estimator as the difference in effect size between areas increased. Since we
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Figure A4: The bias of ratio and model-based estimators plotted against different combina-
tions of area-specific simulation coefficients, summarised as the difference ∆β . Both High
and Low data scenarios are shown.

expected a priori that estimation bias would be more apparent for an unbalanced sampling design, an
expectation that has been confirmed by the results already presented, this secondary simulation was
conducted for the Unbalanced scenario only. The following area-specific coefficients were explored:

β1 1.0 1.5 2.0 2.5 3.0
β2 1.0 0.5 0.0 -0.5 -1.0
∆β 0 1 2 3 4

where ∆β is the difference between coefficient values. The results of this experiment are summarised
in Figure A4. The bias for both methods increases with ∆β but it can be clearly seen that the
ratio-based method is more susceptible.

Conclusions

The results presented here were to a large extent expected given the experimental design and the
way analyses were conducted. Regarding performance of the model-based method, the model was
applied to simulated data generated from the same model. Hence, the model-based estimator should

Table A2: Summary table illustrating comparative performance of ratio and model-based
estimators of the bycatch (N), referred to using the [R] and [M] superscripts respectively.
The estimators are compared using diagnostic ratios of the mean residual error (MRE, a
measure of precision) and mean prediction error (MPE, a measure of bias).

Input Sampling Data MRE diagnostic ratio MPE diagnostic ratio
coefficients design quantity MREN[R]/MREN[M] MPEN[R]/MPEN[M]

Random Null High 1.124 0.570
Null Low 1.548 1.125
Unbalanced High 1.247 5.161
Unbalanced Low 3.037 25.465

Fixed Null High 0.096 9.993
Null Low 0.423 21.214
Unbalanced High 0.229 9.874
Unbalanced Low 0.769 56.994
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be largely unbiased, as our results show. However the parameters are estimated with error and so it
has low precision for low data quantity. This imprecision is worse for an unbalanced sampling design,
which is again what one would expect.

For the ratio estimator, the incomplete sampling design guarantees that bias will occur. Because
the ratio-based method cannot accomodate the random vessel effects (which are estimated in the
model-based method) the estimator will be biased unless all vessels are sampled in all areas, which
was never true for our experiment. However the ratio-based method does not require estimation of
covariates for prediction, and can produce results of comparable (and potentially better) precision
with adequate sampling. Therefore if covariate effects are weak or absent the ratio based method may
perform well, provided the sampling coverage is adequate.

In Table A2 we have calculated diagnostic ratios for each of the performance statistics to summarise
our results. It can be seen quite clearly that precision can be higher or lower for the ratio-based
estimator but that the bias associated with these estimates is often substantial (i.e. MPE [R]

N is much
greater than MPE [M]

N ). It is not clear why the MRE diagnostic should favour the model-based
estimator when input coefficients are Random, and not when they are Fixed, but it may be due to the
particular choice of vessel specific coeffcients generated for the Fixed input scenario. Nevertheless
overall, given that covariate effects, an unbalanced sampling design, and incomplete data sampling
would be the norm for a real fishery, we can conclude that the model-based estimator is likely to be
superior when applied to real data.

This appendix has illustrated some of the basic shortcomings inherent to ratio-based estimators of
fisheries bycatch. Although limited in scope, it is sufficient to highlight the importance of a balanced
sampling design (with respect to the level of stratification) for the method to work well. If it is
not balanced, with sampling concentrated in a few potentially unrepresentative vessels or covariate
realisations, then ratio-based methods do not perform well, being prone to bias. Furthermore, biased
estimates can still be associated with a high level of precision (low variance) giving an unwarranted
and misleading impression of accuracy. Model-based methods on the other hand can be less accurate,
but we have shown that they are far more robust, being more likely to give accurate results under an
unbalanced sampling design even when there are relatively few data available.
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Appendix II: Code listings

Code Listing A1: Catch rate simulation function

# CATCH-RATE SIMULATION FUNCTION
catch.rate <- function(initial.catch.rate,ntime,niter) {

require(MASS)

# number of areas
narea <- length(initial.catch.rate)

# biomass array
x <- array(NA,c(narea,ntime,niter))

# initial values
x0 <- initial.catch.rate

# transition matrix
T <- diag(narea)

# covariance matrix
sd <- 0.1
rho <- 0.8

sigma <- matrix(rho*sd*sd,narea,narea)
diag(sigma) <- sdˆ2

# generate array of correlated
# log-normal random variates
rnd <- array(NA,c(narea,ntime,niter))

for(t in 1:ntime) {
rnd.normal <- mvrnorm(niter,rep(0,narea),sigma)
rnd.lognormal <- exp(rnd.normal)

rnd[,t,] <- t(rnd.lognormal)
}

# projection
x[,1,] <- x0
if(ntime>1) {

for(i in 1:niter) {
for(t in 2:ntime) {

diag(T) <- rnd[,t-1,i]
x[,t,i] <- T%*%x[,t-1,i]

}
}

}

return(x)
}
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Code Listing A2: Simulation function for catch data from a Poisson-LN process, for a single time step only, with design
matrices x.mat and z.mat for fixed and random effects respectively, and associated model data frame model.dfr.
The output summary.data provides the input for the model-based estimator in Code Listing A4.

# DATA SIMULATION FUNCTION
sim <- function(mean.catch.rate,fish.effort,obs.sampling,model.dfr)
{

# design matrices
x.mat <- model.matrix(˜area-1,model.dfr)
z.mat <- model.matrix(˜vessel-1,model.dfr)

# over-dispersion
sigma2e <- 0.5

# random effects
sigma2r <- sigma2.vessel
gmma <- rnorm(ncol(z.mat),0,sqrt(sigma2r))

# fixed effects
beta <- log(mean.catch.rate) - sigma2r/2 - sigma2e/2

# log-linear predictor
log.mu <- x.mat %*% beta + z.mat %*% gmma

# bycatch per tow with log-normal over-dispersion
# and Poisson catch process
bycatch.list <- apply(data.frame(log.mu,fish.effort),1,

function(x) {
lambda <- exp(x[1] + rnorm(x[2],0,sqrt(sigma2e)))
rpois(x[2],lambda)

})

# sample tows
y.list <- list()
for(i in 1:length(bycatch.list)) {

if(obs.sampling[i]>0)
y.list[[i]] <- sample(bycatch.list[[i]],

obs.sampling[i],
replace = ifelse(obs.sampling[i] <

length(bycatch.list[[i]]), F, T)
)

else y.list[[i]] <- NA
}

# summary data
model.dfr$y <- unlist(lapply(y.list,sum))
model.dfr$bycatch <- unlist(lapply(bycatch.list,sum))

# return
list(beta = beta,

bycatch = bycatch.list,
observer.samples = y.list,
summary.data = model.dfr)

}
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Code Listing A3: Function for fitting a Poisson-LN model to observational bycatch data using MCMCglmm and assuming
a sampling effort offset term

# MODEL FITTING FUNCTION
fitmodel <- function(dat) {

require(MCMCglmm)

# construct normal prior distributions
# for fixed effects with informative unit
# prior for log(sampling) offset term
x.mat <- model.matrix(˜area+time-1,dat)
prior <- list(B = list(mu = matrix(0,dim(x.mat)[2]+1),V =

diag(dim(x.mat)[2]+1)*(10ˆ4)))
prior$B$mu[dim(x.mat)[2]+1]<-1
diag(prior$B$V)[dim(x.mat)[2]+1]<-1e-9

# fit model
model.formula <- y ˜ -1 + area + time + log(sampling)
m <- MCMCglmm(model.formula,random =

˜idh(1):vessel,prior=prior,family="poisson",data=dat,pr=TRUE)

return(m)
}

Code Listing A4: Bycatch estimation function for model-based estimator using the model fitting routine in Code Listing
A3.

# MODEL-ESTIMATOR FUNCTION
fitfun.mcmc <- function(dat) {

require(plyr)

# assign model data.frame
model.dfr <- dat

# remove missing values for
# fitting
dat <- subset(dat,sampling>0)

# fit model
m <- fitmodel(dat)

# random effect
sigma2r <- m$VCV[,1,drop=FALSE]

# over-dispersion term
sigma2e <- m$VCV[,2,drop=FALSE]

# extract bycatch.hat values
# as the marginal expectation
x.mat <- model.matrix(˜area+time-1,model.dfr)

beta <- apply(m$Sol[,1:(dim(m$X)[2]-1)],1,function(x) x.mat %*% x)
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log.mu <- sweep(beta,2,sigma2r/2 + sigma2e/2,’+’)

bycatch.hat <- exp(log.mu + log(model.dfr$effort))

# convert to data.frame
bycatch.dfr <- melt(bycatch.hat,varnames=c(’time’,’iter’))
bycatch.dfr$time <- model.dfr$time

# summarize by time
bycatch.dfr <- ddply(bycatch.dfr,.(time,iter),summarize,

value=sum(value))
bycatch.dfr <- ddply(bycatch.dfr,.(time),summarize,

bycatch.hat=posterior.mode(mcmc(value)),
med=quantile(value,0.5),
low=quantile(value,0.025),
upp=quantile(value,0.975))

# return
list(y = y.dfr, bycatch = bycatch.dfr)

}

Code Listing A5: Simulation function for Poisson-LN process, with design matrices x.mat and z.mat for fixed and
random effects respectively, and associated model data frame model.dfr.

# SIMULATION FUNCTION
sim <- function(sampling=1,fixed.linear.predictor)
{

sigma2r <- 1
sigma2e <- 0.5

if(fixed.linear.predictor) {
beta <- beta.fixed
gmma <- gmma.fixed

} else {
beta <- runif(ncol(x.mat),1,3)
gmma <- rnorm(ncol(z.mat),0,sqrt(sigma2r))

}

# log-linear predictor
log.mu <- x.mat %*% beta + z.mat %*% gamma

# log-normal over-dispersion
e <- rnorm(length(log.mu),0,sqrt(sigma2e))

# Poisson rate parameter
lambda <- exp(log.mu + e)

# Poisson catch process
bycatch <- rpois(length(lambda),lambda)

# observation
y <- sampling * bycatch

# return
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list(beta=beta,gmma=gmma,sigma2=sigma2r,
data=data.frame(id=1:length(y),

model.dfr,
effort=1,
sampling,bycatch,y))

}

Code Listing A6: Function for model based estimation of the bycatch using observed values y.

# GLMM FITTING FUNCTION
fit.mcmc <- function(dat) {

require(MCMCglmm)

# fit mixed model
m <- MCMCglmm(y ˜ -1 + area,random =

˜idh(1):vessel,family="poisson",data=dat,pr=TRUE,pl=TRUE)

# extract fixed and random effects
theta <- apply(m$Sol,2,function(x) posterior.mode(mcmc(x)))
# extract variance terms
sigma2 <- apply(m$VCV,2,function(x) posterior.mode(mcmc(x)))
# extract latent variables
fitted <- apply(m$Liab,2,function(x) posterior.mode(mcmc(x)))

# construct design matrix for fixed
# and random effects
W <- cBind(m$X,m$Z)

# calculate marginal expectation of
# bycatch rate
expectation <- exp(W%*%theta + sigma2[2]/2)

# calculate bycatch per record
bycatch <- dat$effort * expectation

# calculate total bycatch
bycatch.total = sum(bycatch)

# return
list(fixef = theta[1:dim(m$X)[2]],reff =

sigma2[1],odisp=sigma2[2],yhat=fitted,bycatch=bycatch.total)
}
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