## Ministry for Primary Industries

Catches, size, and age structure of the 2013-14 hoki fishery, and a summary of input data used for the 2015 stock assessment
New Zealand Fisheries Assessment Report 2015/57
S.L. Ballara,
R.L. O'Driscoll

ISSN 1179-5352 (online)
ISBN 978-1-77665-059-0 (online)
September 2015


Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140
Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx
http://fs.fish.govt.nz go to Document library/Research reports

## Contents

EXECUTIVE SUMMARY ..... 1

1. INTRODUCTION ..... 2
1.1 Stock structure ..... 2
1.2 Description of the hoki fishery ..... 3
1.3 Catch history ..... 4
1.4 Recent hoki research ..... 5
2. HOKI FISHERY, 2013-14 ..... 6
2.1 Catch and effort information ..... 6
2.1.1 Total Allowable Commercial Catch (TACC) and other management controls ..... 6
2.1.2 Catch ..... 6
2.1.3 CPUE analysis ..... 7
2.1.4 Bycatch ..... 10
2.2 Size and age composition of commercial catches ..... 10
2.2.1 Size and age composition in spawning fisheries ..... 12
2.2.2 Size and age composition in non-spawning fisheries ..... 14
2.2.3 Comparison of size and age composition between main areas ..... 15
3. HOKI RESEARCH ..... 15
3.1 Resource surveys ..... 15
3.1.1 Trawl surveys ..... 15
3.1.2 Acoustic surveys ..... 16
4. CONCLUSIONS ..... 16
5. ACKNOWLEDGMENTS ..... 16
6. REFERENCES ..... 16
TABLES ..... 20
FIGURES ..... 37
APPENDICES ..... 103

## EXECUTIVE SUMMARY

Ballara, S.L.; O'Driscoll, R.L. (2015). Catches, size, and age structure of the 2013-14 hoki fishery, and a summary of input data used for the 2015 stock assessment.

## New Zealand Fisheries Assessment Report 2015/57. 123 p.

This report summarises catches by area and presents the length and age structure of hoki caught commercially during the 2013-14 fishing year. Length frequency and catch-at-age data from spawning and non-spawning fisheries are compared with those from previous years. Biomass indices from research surveys and results from other research on hoki in the last year are also briefly described. Data in this report were incorporated in the hoki stock assessment in 2015.

The total reported hoki catch in 2013-14 was $146335 \mathrm{t}, 3700 \mathrm{t}$ below the TACC of 150000 t , and 20000 $t$ higher than the catch in 2012-13. Catches in 2013-14 increased in the main western stock areas and decreased slightly in the main eastern stock areas. The spawning catch on the west coast South Island (WCSI) increased by 13000 t to 69400 t , and was the largest hoki fishery for the fourth consecutive season. The non-spawning fishery on the Chatham Rise was the second largest hoki fishery, with 33800 t taken in 2013-14, about 2800 t less than in 2012-13. The spawning catch from Cook Strait decreased by 1000 t to 18400 t , and the non-spawning catch from the Sub-Antarctic increased by 5800 t to 19900 t in 2013-14. Catches from other areas remained at low levels. About 90100 t of the total catch was taken from western stock areas in 2013-14 and 56200 t was taken from eastern stock areas, consistent with the management targets of 90000 t west and 60000 t east.

Length and age frequency distributions from the commercial fishery show that most of the catch in 201314 was fish of lengths 45 to 90 cm . Hoki from the 2011 year class ( $50-65 \mathrm{~cm}$ ) dominated the length frequency distribution on the Chatham Rise and were abundant in the Sub-Antarctic. In the spawning areas larger hoki from ages 5-7 dominated the catch, but the 2011 year class was also present. In all areas there were few hoki from the 2010 year class. The percentage of small fish in the catch in 201314 increased, mainly due to the presence of the 2011 year class.

Only one fishery independent research survey for hoki was carried out in 2013-14. The relative biomass index for hoki from the core strata in the 2014 Sub-Antarctic trawl survey decreased by $43 \%$ from 2012. The 2011 year class was evident in the survey length frequency distribution but was not strong at age $3+$. Estimates for age $1+$ and $2+$ (2013 and 2012 year-classes) were low.

## 1. INTRODUCTION

This report provides data relevant to the 2015 hoki stock assessment. Catch statistics and data from commercial sampling during the 2013-14 fishing year are presented and results from other research programmes since March 2014 are summarised. This includes results of the trawl survey of the SubAntarctic in November-December 2014. Details of model structure, results, and yield estimates from the hoki stock assessment carried out in 2015 will be published separately.

This report provides the final reporting requirement for Objective 2 of DEE2010-02HOKD, Objectives 1,2 , and 7 of MID2010-01E, and Objective 1 of DEE2014-02.

DEE2010-02HOKD Objective 2: Provide descriptive analysis of the hoki fishery in 2013-14 fishing year.

MID2010-01E Objective 1: To determine the age and size structure of the commercial catches of hoki in the main non-spawning fisheries from samples collected at sea by the Observer Programme in the 201314 year.

MID2010-01E Objective 2: To determine the catch-at-age of commercial catches of hoki from the WCSI and Cook Strait spawning fisheries from data collected by the Observer Programme and from other sources in the 2013-14 year.

MID2010-01E Objective 7: To determine the age and size structure of hoki from the trawl surveys.
DEE2014-02 Objective 1: To collect otolith samples in the fish processing sheds of the commercial landings of hoki from Cook Strait during winter 2014.

### 1.1 Stock structure

The hoki catch is currently managed under a single TACC which can be caught in all areas of the EEZ, excluding QMA 10 (Fishstock HOK 1). However, since 1990 the Hoki Working Group has assessed hoki as two stocks, "eastern" and "western" (Annala (1990) and subsequent Plenary Reports). Hoki on the west coast of the North and South Islands and in the area south of New Zealand, including Puysegur Bank, Snares Shelf, and Campbell Plateau, are assumed to be one stock unit, the "western stock". The east coast of the South Island, Mernoo Bank, Chatham Rise, Cook Strait, and the east coast of the North Island up to North Cape are assumed to contain the "eastern stock". Immature hoki (2-4 years old) from both "stocks" occur together on the Chatham Rise.

Livingston (1997) reviewed the two-stock hypothesis originally adopted in 1990 (Livingston 1990) with respect to data collected in 1990-97, and concluded that this hypothesis was still a valid interpretation for hoki. Morphometric and ageing studies (Horn \& Sullivan 1996, Livingston \& Schofield 1996) have found consistent differences between adult hoki from the two main dispersed areas (Chatham Rise and Southern Plateau), and from the two main spawning grounds in Cook Strait and west coast South Island (WCSI). These differences demonstrate that there are two sub-populations of hoki. Whether they reflect genetic differences between the two sub-populations, or are the result of environmental differences between the Chatham Rise and Southern Plateau, is not known. The chemistry of otoliths from the WCSI and Cook Strait stocks is similar (Kalish et al. 1996), and no genetic differences were detected between spawning stocks (Smith et al. 1981, 1996).

From 2006 to 2007 (Francis 2007, 2008) and since 2012 (McKenzie 2013, 2015a, 2015b), the hoki stock assessment model has had two variants which were associated with different stock structure hypotheses. The 'base case' hypothesis assumes natal fidelity: a fish that was spawned in one area will grow up to spawn in the same area (i.e., a fish is 'eastern' or 'western' from birth). The alternative
hypothesis does not assume natal fidelity, so fish spawned in one area can themselves spawn in another area (i.e., a fish chooses to be 'eastern' or 'western' when it matures). Under both hypotheses, once a fish has spawned it shows site fidelity - it cannot change spawning grounds. All model runs from 200811 assumed natal fidelity because of technical problems concerning the definition of unfished biomass without this assumption (Francis 2009, McKenzie 2013). These problems are now resolved and model runs which do not assume natal fidelity are currently included as a sensitivity run (McKenzie 2015a, 2015b).

Francis et al. (2011) described a pilot study, aimed at determining whether analyses of stable isotopes and trace elements in otoliths could be useful in testing stock structure hypotheses and the question of natal fidelity. However, none of the six trace elements or two stable isotopes considered unambiguously differentiated the two hoki stocks. Two earlier pilot studies appeared to provide weak support for the hypothesis of natal fidelity for the western and eastern spawning stocks. Smith et al. (2001) found significant differences in gill raker counts, and Hicks \& Gilbert (2002) found significant differences in measurements of otolith zones between samples of 3 year-old hoki from the 1997 year-class caught on the WCSI and in Cook Strait. However, when additional year-classes were sampled, differences were not always detected (Hicks et al. 2003).

Horn (2011) reviewed the published literature on natal fidelity in relationship to management of hoki. He concluded that, because hoki are an off-shore species, widely dispersed in the non-spawning season, with multiple diffuse spawning areas, it is unlikely that hoki exhibit $100 \%$ natal fidelity. Even if natal fidelity is the preferred option for hoki from an evolutionary perspective, it is likely that some proportion of the population would stray routinely. An independent review of the hoki assessment model, commissioned by Ministry for Primary Industries in February 2014, noted that "the extents of natal fidelity are important to identify", and recommended exploration of a range of model structures (Butterworth et al. 2014).

### 1.2 Description of the hoki fishery

Historically, the main fishery for hoki has operated from late June to late August on the WCSI where hoki aggregate to spawn. The spawning aggregations begin to concentrate in depths of $300-700 \mathrm{~m}$ around the Hokitika Canyon from late June, and further north off Westport later in the season. Fishing in these areas continues into September in some years. In 1988 another fishery developed on large spawning aggregations of hoki in Cook Strait. The spawning season in Cook Strait runs from late June to mid-September, peaking in July and August. Small catches of spawning hoki are taken from other grounds off the east coast of South Island (ECSI), and late in the season at Puysegur Bank. There are also anecdotal reports of spawning hoki being caught near the Snares Islands, Chatham Islands, and several other locations off the east coast of North Island (ECNI).

Outside the spawning season, when hoki disperse to their feeding grounds, substantial fisheries have developed since the early 1990s on the Chatham Rise and in the Sub-Antarctic. These fisheries usually operate in depths of $300-800 \mathrm{~m}$. The Chatham Rise fishery generally has similar catches over all months except in July-September, when catches are lower due to the fishery moving to the spawning grounds. In the Sub-Antarctic, catches have typically peaked in April-June. Out-of-season catches are also taken from Cook Strait and ECNI, but these are small compared to spawning season catches.

From 1986 to 1990 surimi vessels dominated the catches and took about $60 \%$ of the annual WCSI catch. However, since 1991, the surimi component of catches has decreased and processing to head and gut or to fillet product has increased, as has "fresher" catch for shore processing. The hoki fishery now operates throughout the year, producing high quality fillet product from both spawning and non-spawning fisheries. Twin-trawl rigs have been used in some hoki fisheries since 1998, and trawls made of spectra twine (a high strength twine with reduced diameter resulting in reduced drag and improved fuel efficiencies) were introduced to some vessels in 2007-08.

The Hoki Fishery Management Company introduced a Code of Practice for hoki target trawling in 2001 with the aim of protecting small fish (less than 60 cm ). The Code of Practice was replaced by Operational Procedures for Hoki Fisheries, implemented by the Deepwater Group from 1 October 2009. The Operational Procedures aim to manage and monitor fishing effort within four industry management areas, where there are thought to be high abundance of juvenile hoki (Narrows Basin of Cook Strait, Canterbury Banks, Mernoo, and Puysegur). These areas are closed to hoki target trawling by vessels larger than 28 m , with increased monitoring when targeting species other than hoki. There is also a general recommendation that vessels move from areas where catches of juvenile hoki (defined as less than 55 cm total length) comprise more than $20 \%$ of the hoki catch by number.

### 1.3 Catch history

The total annual catches of hoki within the EEZ from 1969 to 2013-14 are given in Tables 1 and 2. The hoki fishery was developed by Japanese and Soviet vessels in the early 1970s (Table 1). Catches increased to 100000 t in 1977, but dropped to less than 10000 t in 1978 when the 200 n . mile Exclusive Economic Zone (EEZ) was declared and a quota limit of 60000 t was introduced (Figure 1). Hoki remained a relatively small fishery of up to 50000 t a year until 1986, when the TACC was increased. The fishery expanded to an estimated catch in 1987-88 of about 255000 t (Table 2). Reported annual catches ranged between 175000 and 215000 t from 1988-89 to 1995-96, increasing to 246000 t in 1996-97, and peaking at 269000 t in 1997-98, when the TACC was over-caught by 19000 t . The TACC was reduced to 90000 t in 2007-08 and catches declined accordingly (Table 2). The TACC has been increased in four steps since 2009-10 and catches have increased. The current TACC set on 1 October 2014 is 160000 t .

Catches by area since 1988-89 are given in Table 3 and Figure 2. The pattern of fishing has changed markedly since 1988-89 when over $90 \%$ of the total catch was taken in the WCSI spawning fishery. This has been due to a combination of TAC changes and redistribution of fishing effort. The catch from the WCSI declined steadily from 1988-89 to 1995-96, increased again to between 90000 and 107000 t from 1996-97 until 2001-02, then dropped sharply to a low of 20500 t in 2008-09. The WCSI catch has increased again over the past five years to 69400 t in 2013-14. This was about $47 \%$ of the total hoki catch in 2013-14, making the WCSI the largest fishery in New Zealand for the four most recent years (Table 3). In Cook Strait, catches peaked at 67000 t in 1995-96, declined to 14900 in 2010-11, but have increased over the past two years to 19400 t in 2002-13 and 18400 t in 2013-14. Non-spawning catches on the Chatham Rise peaked at about 75000 t in 1997-98 and 1998-99, decreased to a low of 30700 t in 200405 , before increasing again to about 39000 t from 2008-09 to 2011-12, but decreasing to 36500 t in 201213 and 33800 t in 2013-14. The Chatham Rise was the largest hoki fishery from 2006-07 to 2009-10, but contributed only about $23 \%$ of the total catch in 2013-14. Catches from the Sub-Antarctic peaked at over 30000 t in 1999-00 to 2001-02, declined to a low of 6200 t in 2004-05 before increasing slowly to 19900 t in 2013-14. Catches from Puysegur decreased from 960 t in 2012-13 to 780 t in 2013-14, ECSI decreased from 3300 t to 2800 t , and ECNI increased from 1000 t to 1300 t (Table 3).

From 1999-2000 to 2001-02, there was a redistribution in catch from eastern stock areas (Chatham Rise, ECSI, ECNI, and Cook Strait) to western stock areas (WCSI, Puysegur, and Sub-Antarctic) (Figure 2). This was initially due to industry initiatives to reduce the catch of small fish in the area of the Mernoo Bank, but from 1 October 2001 was part of an informal agreement with the Minister of Fisheries that $65 \%$ of the catch should be taken from the western fisheries to reduce pressure on the eastern stock. This agreement was removed following the 2003 hoki assessment in 2002-03, which indicated that the eastern hoki stock was less depleted than the western stock and effort was shifted back into eastern areas, particularly Cook Strait. From 2004-05 to 2006-07 there was a further agreement with the Minister that only $40 \%$ of the catch should be taken from western fisheries. From 1 October 2007 the target catch from the western fishing grounds was further reduced to 25000 t within the overall TACC of 90000 t . This target was exceeded in both 2007-08 and 2008-09, with about 30000 t taken from western areas. In 2009-10, the target catch from the western fishing grounds was increased to 50000 t within the overall TACC of 110000 t , and
catches were at about the industry-agreed catch split. The target catch from the western fishing grounds was further increased to 60000 t in 2010-11 (within the overall TACC of 120000 t ), to 70000 t in 201112 and 2012-13 (overall TACC of 130000 t ), and to 90000 t in 2013-14 (overall TACC 150000 t ). The split between eastern and western catches has been within 2000 t of the management targets since 201112.

### 1.4 Recent hoki research

McKenzie (2015b) reported the stock assessment carried out in 2014, using the Bayesian model developed in 2002 (Francis et al. 2003) and implemented in the general-purpose stock-assessment program CASAL (Bull et al. 2012). The Deepwater Working Group agreed on a single base model run in 2014. In this base model the problem of the lack of old fish in both fishery-based and survey-based observations is dealt with by allowing natural mortality to be age dependent. Two alternative models were investigated where two catchabilities were fitted to the Southern Plateau series instead of just one: (i) a different catchability from other years was used for 2004-07 inclusive, and (ii) a different catchability from other years was used for 2008-13 inclusive. However, it was decided that for a time series of the length of the Southern Plateau series it was not unexpected statistically for there to be a series of years where the biomass was consecutively low/high, and two catchabilities were not needed. Other sensitivity runs were conducted: (iii) using a domed spawning selectivity instead of allowing for an age varying natural mortality, and (iv) not assuming natal fidelity (but assuming adult fidelity). Both the eastern and western hoki stocks were estimated to be increasing after reaching their lowest levels in about 2006. The western stock is estimated to be $48-66 \% \mathrm{~B}_{0}$ and the eastern stock $59-67 \% \mathrm{~B}_{0}$. The western stock experienced an extended period of poor recruitment from 1995 to 2001 inclusive. However, recruitment has been near or above average since 2001, except for in 2010 and 2012 where it was likely to have been below average (although estimated with high uncertainty for both years) (McKenzie 2015b).

An independent review of the hoki assessment model was commissioned by the Ministry for Primary Industries and carried out from 17-21 February 2014. The Review Panel concluded that in broad terms, the results from the hoki assessment model were satisfactory and robust in regard to resource status and trends (Butterworth et al. 2014). The Panel made 26 recommendations for future work to explore, document, and improve the assessment. Recommendations identified as urgent were addressed for the 2014 assessment (McKenzie 2015b). A recommendation to use two catchabilities for the sub-Antarctic trawl survey was considered in the working group process, where it was decided not to follow the recommendation, and instead to have a single catchability for the base model. There is currently a project in progress looking at potential reasons for changes in catchability ("Catchability in the SubAntarctic trawl surveys", Project DEE2014-01). McKenzie (2015d) provided an update on progress towards adopting other recommendations before the 2015 assessment.

O'Driscoll et al. (2015b) reviewed the trawl and acoustic components of the west coast South Island (WCSI) Tangaroa survey to inform future survey design. Specific aspects considered were: a) vessel and gear suitability; b) survey timing for each component; c) spatial and depth coverage of each component; d) vessel days and number of tows in trawl component; e) vessel days and number of snapshots and mark identification tows in acoustic component; f) additional biological sampling; g) quality of the estimates of biomass. The authors concluded that the current acoustic survey area and timing is appropriate for hoki and provides a useful index for stock assessment. The trawl survey component provides fisheries-independent estimates of abundance for hake, ling, and associated middle depth species. Trawl estimates from the northern area do not appear to be providing reliable indices of hoki abundance.

Ballara \& O'Driscoll (2015) provided estimates of annual levels of bycatch and discards in the New Zealand hoki, hake, and ling target trawl fishery for 1990-91 to 2012-13, using commercial catch and effort data to scale up rates calculated from the observed portion of the fishery. Hoki, hake, and ling
accounted for about $91 \%$ of the total catch. The main bycatch species were silver warehou, javelinfish, rattails, and spiny dogfish. Annual bycatch ranged from about 28000 t to 87500 t . The main species discarded were spiny dogfish, rattails, javelinfish, hoki, and shovelnose dogfish. There was an average of 0.11 kg of observed species discarded per kilogram of observed hoki, hake, and ling caught.

Dunford et al. (2015) estimated a new acoustic target strength (TS) to total length (TL) relationship for hoki of TS $=24.5 \log _{10}(\mathrm{TL})-83.9$ based on a weighted non-linear least-squares fit to acoustic backscattering cross-section measurements from 62 New Zealand hoki between 35 and 93 cm TL on the WCSI in 2012. These measurements were collected in situ using a trawl-mounted acoustic-optical system (AOS). Using the new TS-TL relationship decreased absolute estimates of hoki abundance by $50-60 \%$ from those currently used in stock assessment, but had little impact on relative indices. Estimated $90 \%$ confidence intervals around the new TS-TL relationship based on bootstrapping suggested uncertainty in mean TS of $\pm 1.5 \mathrm{~dB}$ at typical New Zealand hoki lengths, with resulting uncertainty in abundance estimates of up to $50 \%$. Dunford et al. (2015) concluded that further in situ measurements and modelling are required to reduce this uncertainty and to investigate potential differences in TS between AOS-measured and 'undisturbed' fish.

The only new fisheries-independent estimates of hoki abundance since the 2014 hoki assessment was the trawl survey of the Sub-Antarctic in November-December 2014. Results from this survey are summarised in Section 3.1. Results from hoki surveys in 2013-14 published in the past year were: 2013 Cook Strait acoustics (O’Driscoll et al. 2015c), 2013 WCSI trawl and acoustics (O’Driscoll et al. 2015a), and 2014 Chatham Rise trawl (Stevens et al. 2015).

## 2. HOKI FISHERY, 2013-14

### 2.1 Catch and effort information

### 2.1.1 Total Allowable Commercial Catch (TACC) and other management controls

In the 2013-14 fishing year the TACC for HOK1 was 150000 t . This TACC applied to all areas of the EEZ except the Kermadec FMA which had a TACC of 10 t . There was an agreement with the Minister for Primary Industries that no more than 90000 t of the TACC should be taken from western stock areas. The TACC was increased to 160000 t from 1 October 2014, with an agreement that 100000 t should be taken from western areas.

Chartered vessels may not fish inside the 12-mile Territorial Sea and there are various vessel size restrictions around some parts of the coast. On the WCSI, a 25 -mile line closes much of the hoki spawning area in the Hokitika Canyon and most of the area south to the Cook Canyon to vessels over 46 m overall length. In Cook Strait, the whole spawning area is closed to vessels over 46 m overall length.

### 2.1.2 Catch

The overall catch of $146335 t$ was $20000 t$ higher than the catch in 2012-13 and about $3700 t$ lower than the TACC (see Table 2). The total estimated catch from catch-effort-and-landing-return (CELR), lining-catch-effort-return (LCER), net-catch-effort-and-landing-return (NCELR), trawl-catch-effort-return (TCER), lining-trip-catch-effort-return (LTCER), tuna-long-lining-catch-effort-return (TLCER), and trawl-catch-effort-and-processing-return (TCEPR) data was 143706 t . As the data extraction was done in mid-December 2014, a small amount of data may still not have been entered into the database. As estimated catches did not match the total monthly harvest return (MHR) catch, estimated catches were scaled up to the MHR total catch of 146335 t .

Relative to 2012-13, catches in 2013-14 increased in the main western stock areas and decreased slightly in the main eastern stock areas (Figure 2a, Table 3). The WCSI was the largest fishery for the fourth consecutive year, with the catch increasing by 13000 t to 69400 t in 2013-14. Catches inside the 25 n . mile line made up $13 \%$ of the total WCSI catch in 2013-14, an increase compared to 2012-13, but down from a peak of $41 \%$ of the catch taken inside-the-line in 2003-04 (Table A1a). The Chatham Rise was the second largest hoki fishery, with 33800 t taken from this area in 2013-14, a decrease of 2800 t from the 2012-13 level. The catch from Cook Strait of 18400 t was down by about 1000 t from that in 2012-13, and back to a catch level similar to that in 2007-08. The catch from the Sub-Antarctic of 19900 t in 201314 was about 5800 t higher than that in 2012-13 (see Table 3). Catches from ECNI increased by 280 t to 1300 t , whereas catches from Puysegur and ECSI decreased by 170 t to 780 t , and 560 t to 2800 t respectively. Overall, about 90100 t of the total catch in 2013-14 was taken from western stock areas with 56200 t from the eastern stock areas (Figure 2a) - close to the industry agreed catch split.

Most hoki catch was recorded on the TCEPR form (138 000 t ), with the WCSI and Cook Strait the only areas where a substantial amount of catch was recorded on the TCER form (Table A1, Figure 2b). Most hoki catch on the WCSI and in Cook Strait was taken by midwater trawling, whereas most catch on the Chatham Rise and Sub-Antarctic was taken by bottom trawling (Figure 2b). Up until 2003-04 almost all of the hoki catch was from target hoki tows. Hoki targeting then decreased, especially on the Sub-Antarctic, WCSI and Chatham Rise, until 2008-09 when only $86 \%$ of the overall hoki catch was from tows targeting hoki (Figure 3). With the increases in TACC from 2009-10, hoki targeting has again increased, and in 2013-14, $95 \%$ of the overall catch was taken from hoki target tows ( $97 \%$ of the hoki catch on the WCSI, $87 \%$ on the Sub-Antarctic, and $98 \%$ on the Chatham Rise). Cook Strait has remained almost exclusively a hoki target fishery.

A high proportion of the hoki catch in 2013-14 was taken during the spawning season from June to September (Figure 4). Peak catches on the WCSI spawning grounds were in July and August, as in previous years (Figure 5), with most of the catch taken by late-August. The WCSI fishing season is now longer with fishing in May (although most pre-June catch is from inside the 25 n.mile line), and the 2014 season had higher catches through to mid-August compared to the previous four seasons (Figure 4b, Figure 5). In Cook Strait, peak catches were from mid-July to mid-September, with about 3800 t caught outside the spawning season (Figure 5). The seasonal pattern of fishing in Cook Strait was similar to that in previous years, but catches were lower in mid-July 2014 compared to those in the 2013 season (Figure 4b, Figure 5). Fishing during the spawning season on the ECSI occurred mainly in September. Fishing at Puysegur was mainly in May, June and September (Figure 5). Outside the spawning season, most of the catch was taken from October 2013 to June 2014 on the Chatham Rise and in the Sub-Antarctic, with small amounts of catch taken over the rest of the year in these areas (see Figures 4 and 5). Small catches were taken yearround from the ECNI (Figures 4 and 5).

### 2.1.3 CPUE analysis

Unstandardised catch and effort from TCEPR data for the six largest hoki fisheries (WCSI, Cook Strait, Chatham Rise, ECSI, Sub-Antarctic, and Puysegur) are summarised in Appendix 1. Standardised CPUE analyses on tow-by-tow target hoki catches reported on TCEPR for the WCSI, Cook Strait, Chatham Rise, and Sub-Antarctic were also carried out (Appendix 1 and Figure 6). Catch rate analysis did not include data from CELR forms (which account for up to a third of the catch in some years in Cook Strait and some catch from the WCSI, but do not provide tow-by-tow effort data), from TCER forms (which have been in use for only six years), or from the LCER, LTCER, TLCER or NCELR forms. Standardised CPUE analyses using observer tow-by-tow target hoki catches for the WCSI, Cook Strait, Chatham Rise, and Sub-Antarctic were also carried out.

Standardised analyses were carried out only to explore trends in catch rate. CPUE indices are not believed to provide reliable estimates of hoki abundance and are not currently included in the hoki stock
assessment (McKenzie 2015c). Changes in fishing pratice (e.g., use of twin trawls), fishing practices (e.g., target fishing, use of escapement panels on smaller boats, incorrect recording of tow duration as some vessels leave the catch in the water until ready to process, changes in target bag size to reflect processing capacity of vessel, quality of fish product, and precision seafood harvesting (PSH)), and the reliability of gear parameters recorded on the fishing returns are problems for CPUE analyses. There are also other effects on catching ability that cannot be quantified, such as improvements or changes in net and bottom rig design, and electronic equipment. PSH trawls were identified in TCEPR data using extra data from MPI and removed from unstandardised and standardised analyses. There were no PSH tows in the observer data.

A lognormal linear model was used for all standardised analysis models following Dunn (2002). A forward stepwise Generalised Linear Model (Chambers \& Hastie 1991) implemented in R code (R Development Core Team 2013) was used to select variables in the model. Fishing year was forced into the model as the first term, and the algorithm added variables based on changes in residual deviance. The explanatory power of a particular model is described by the reduction in residual deviance relative to the null deviance defined by a simple intercept model. Variables were added to the model until an improvement of less than $1 \%$ of residual deviance explained was seen following inclusion of an additional variable. Variables were either categorical or continuous, with model fits to continuous variables being made as third-order polynomials, though a fourth-order polynomial was also offered to the models for duration. Categorical variables offered to the model included vessel key, primary method, month, vessel experience (number of years vessel in the fishery), twin vessel (true/false variable for a vessel that has used a twin trawl), statistical area; continuous variables included fishing duration, fishing distance (calculated from positions at start and end of tow), distance 2 (calculated as fishing duration $\times$ speed), start latitude, start longitude, start time, mid time (mid time of tow), depth of bottom, effort depth (depth of net), depth above bottom (depth of bottom minus effort depth), effort width (wing spread), day of season, and effort height (headline height). As the WCSI dataset included both midwater and bottom tows, nested effects between method and effort duration, effort depth, effort height, effort speed, depth above bottom and effort width were investigated. The dependent variable was the logtransformed estimated catch per tow, with positive catches retained and zero hoki catches excluded.

A vessel variable was incorporated into the CPUE standardisation to allow for differences in fishing power between vessels. A subset of "core" vessels was chosen for each analysis, with vessels not involved in the fishery for a certain number of years (varied by analysis) and with a minimum level of annual effort excluded because they provided little information for the standardisations, which could result in model over-fitting (Francis 2001b). TCEPR data were investigated for level of catch and effort for different years of vessel participation in the fishery, and "core" vessels were defined as those which reported approximately $80 \%$ of hoki catches in the defined fishery. For observer data (where there were fewer tows), core vessels were defined as those that were in the fishery for at least two years, and contributed more than 35 observed tows.

The standardised indices were calculated using GLM, with associated standard errors. Indices were presented using the canonical form (Francis 1999) so that the year effects for an area were standardised to have a geometric mean of 1 . The CVs represent the ratio of the standard error to the index. The $95 \%$ confidence intervals are also calculated for each index.

The influence of each variable accepted into the lognormal models was described by influence plots (Bentley et al. 2012). They show the combined effect of (a) the expected log catch for each level of the variable (model coefficients) and (b) the distribution of the levels of the variable in each year, and therefore describe the influence that the variable has on the unstandardised CPUE and which is accounted for by the standardisation.

Fits to the model were investigated using standard residual diagnostics. For each model, a plot of residuals against fitted values and a plot of residuals against quantiles of the standard normal distribution were produced to check for departures from the regression assumptions of homoscedasticity and normality of errors in log-space (i.e., log-normal errors).

On the WCSI, CPUE models were run for tows targeting hoki, with sensitivity runs using other target species ("main target species"), and midwater and bottom trawls targeting hoki. Cook Strait CPUE models were for midwater tows that targeted hoki. For the Chatham Rise and ECSI, and Sub-Antarctic, CPUE models were run for bottom tows with target hoki tows, with a sensitivity run using main target species. An analysis of hoki target tows in Statistical Areas 602 and 603 was also run for the SubAntarctic. Selected explanatory variables for target hoki runs are listed in Table 4.

Unstandardised catch rates for the WCSI are presented for both midwater and bottom trawls (Table A2). Midwater trawl catches accounted for $71 \%$ of the total spawning season catch on the WCSI in 2013-14. The unstandardised catch rate from all non-zero midwater tows in 2013-14 decreased slightly from 2012-13, but was the fourth highest in the series, with a median catch of 5.9 t per hour, and a median tow duration of 2.8 hours. Catch rates were slightly higher for target hoki tows, but median tow duration was similar. Catch rates in bottom trawls on the WCSI were lower than those in midwater trawls, with a median catch rate of 1.8 t per hour for all non-zero hoki catches, and 3.8 t per hour for target hoki tows. Median tow duration of bottom trawls increased slightly to 5.2 hours for all target species, and 3.9 hours for target hoki only tows, in 2013-14. From 1999-2000 to 2003-04, standardised catch rates from non-zero tows showed a similar decline to non-standardised catch rates. However, standardised indices have increased at a much higher rate than unstandardised indices since 2003-04 (Table A3-A4, Figure 6a), with a slight decrease in standardised catch rates in 2013-14. All WCSI datasets for TCEPR and observer data showed similar overall trends (Figure 6b).

Midwater trawl catches accounted for $99.9 \%$ of the spawning season catch of 18399 t reported on TCEPR forms from Cook Strait in 2013-14. A further 3184 t of catch was reported on TCER forms (see Figure 2b). Non-standardised catch rates continued to be high in Cook Strait, although there was a decrease in median catch rate from 17.0 to 12.3 t per hour in non-zero mid-water tows in 2013-14, and an increase in median tow duration to 1 hour (equivalent to a median catch of 11.2 t per tow). Overall the non-standardised catch rates showed a slight increase from 1989-90 to 2001-02 with a flat but undulating trend since then, whereas standardised catch rates showed a flat trend (Table A3-A4, Figure 6). Catch rates in Cook Strait appear to reflect a fishing strategy where vessels limit the size of catches to maintain fish quality.

Over 97\% of the Chatham Rise catch in 2013-14 was taken in bottom trawls, with most of the catch reported on TCEPR forms (see Figure 2b). There has been a general increase in tow duration on the Chatham Rise since the 1990s, with a median tow duration of 4.8 hour in 2013-14. The median nonstandardised catch rate in bottom trawls on the Chatham Rise in 2013-14 of 1.1 t per hour was similar to that in the previous five years. The catch rate in hoki target trawls increased from 0.6 t per hour in 2002-03 to 1.7 t per hour in 2008-09, and has decreased slightly to 1.4 t per hour in 2013-14. Standardised catch rates generally decreased from 1991-92 to 2003-04, increased to 2008-09 and have levelled off with small ups and downs since then (Table A3-A4, Figure 6a). Similar trends were observed for all Chatham Rise data sets (Figure 6b).

Bottom trawl catches reported on TCEPR forms accounted for over $99 \%$ of the catch taken from the Sub-Antarctic in 2013-14 (see Figure 2b). Median tow duration in 2013-14 increased slightly to 5.0 hours and non-standardised catch rates in bottom trawls also increased slightly to 0.7 t per hour. Catch rates for hoki target bottom trawls were much higher than those for all target trawls ( 1.6 t per hour in 2013-14) and were higher than those on the Chatham Rise in 2013-14. Standardised catch rates generally decreased from 1996-97 to 2003-04 and have increased to much higher levels since (Figure 6a). Vessels targeting main species showed generally similar trends (Table A3-A4, Figure 6b), but observed vessels had lower CPUE indices in 2011-12 and 2012-13. The Statistical Area 602 and 603 data subset for target hoki tows showed a similar trend to all target hoki tows although indices were slightly higher to 2001-02 and lower from 2004-05. Indices from 2003-04 to 2006-07 were the lowest in the series (Figure 6b), consistent with lower observed biomass recorded in the trawl survey during this period.

Spawning season catches from the ECSI were mainly reported on TCEPR forms (see Figure 2b).

Midwater tow target hoki catch rates in 2013-14 increased to 8.4 t per hour, and bottom tow catch rates were 2.5 t per hour. Spawning season catches from Puysegur were also mainly reported on TCEPRs (see Figure 2b), with midwater and bottom tow target hoki catch rates in 2013-14 at 3.6 t and 4.1 t per hour respectively.

Standardised CPUE indices for WCSI, Chatham Rise, and Sub-Antarctic all showed overall similar trends: decreasing from 1991-92 to 2003-04 and then increasing since, although Chatham Rise indices have been flatter than those in the other areas since 2008-09 (Figure 6b). Observed CPUE indices for WCSI, Chatham Rise, and Sub-Antarctic also showed overall similar trends, but were more spiky due to fewer data.

### 2.1.4 Bycatch

Estimates of bycatch in the hoki fishery were determined from data collected by Ministry for Primary Industries observers. For target hoki trawls, the observer data in 2013-14 represent about $47.6 \%$ of vessels, $12.6 \%$ of tows, and $18.2 \%$ of the total catch (Table 5). The bycatch rate (defined as the percentage of the hoki catch) was estimated for the main bycatch species by fishery in Table 6. Other bycatch species are also taken, particularly in the non-spawning fisheries, but bycatch rates for these species are usually less than $1 \%$. Note that some of the apparent changes in bycatch rates may have been related to changes in observer coverage between years (e.g., Livingston et al. 2002), so the data should be treated with caution. As there have been changes in the proportion of hoki target catches (see Figure 3, Section 2.1.2), caution also needs to be exercised when interpreting the definition of the hoki target fishery. A more comprehensive analysis of catch and discards in the hoki, hake and ling fishery from 1990-91 to 2012-13 is provided by Ballara \& O'Driscoll (2015). Bycatch rates were also plotted by area for midwater and bottom tows (Figure 7).

Overall bycatch rates in the spawning areas in 2013-14 were generally low (less than 2\%) for most species. On the WCSI, 2013-14 bottom trawl fishery bycatch rates were high for hake (11.1\%), ling (5.6\%), and silver warehou ( $1.9 \%$ ), whereas midwater trawl bycatch rates were much lower with hake at $1.8 \%$, ling at $1.2 \%$, and silver warehou at $0.2 \%$. In 2013-14 bottom trawl bycatch rates increased for silver warehou, but decreased for hake, ling and spiny dogfish from 2012-13. In midwater trawls, frostfish increased and hake and ling decreased from 2012-13. Bycatch rates for spiny dogfish were similar for both fishing methods ( $1.1 \%$ for bottom trawls and $1.2 \%$ for midwater trawls). As in the past, there was very little bycatch in the midwater Cook Strait fishery, with spiny dogfish having the largest observed bycatch rate ( $1 \%$ ).

In the non-spawning areas, bycatch rates in 2013-14 were generally higher than those for spawning areas. On the Chatham Rise bottom trawl fishery, bycatch rates for silver warehou (4.4\%), ling (4.0\%) and spiny dogfish ( $2.6 \%$ ) increased from 2012-13, whereas javelinfish (5.0\%) and rattails (5.2\%) decreased. Of the main Sub-Antarctic bottom trawl bycatch species, bycatch rates decreased for silver warehou ( $1.1 \%$ ), but increased for all other main bycatch species: hake ( $1.5 \%$ ), ling ( $11.1 \%$ ), white warehou (1.4\%), spiny dogfish (4.5\%), rattails (2.8\%), and javelinfish (4.2\%).

### 2.2 Size and age composition of commercial catches

Data to estimate length frequency distributions in 2013-14 were available from the at-sea Ministry for Primary Industries' Observer Programme (OP). Shed ('market') sampling of landed hoki in Cook Strait was also carried out in Cook Strait in 2013-14, resuming a programme that was discontinued in 2010-11. The industry observer programme formerly run by the Hoki Fishery Management Company (HMC) has been discontinued and no data have been provided since 2004-05.

Density plots of all commercial TCEPR and TCER trawls in which hoki was caught in 2013-14 are shown in Figure 8. Observed positions of all tows sampled for hoki length frequency by the OP are provided in the TCEPR plot. Hoki were measured by OP observers in 2077 tows (slightly less than in 2012-13 where
data from 2335 tows were collected), of which 864 came from the WCSI, 76 from Cook Strait, 656 from the Chatham Rise, 448 from the Sub-Antarctic, 1 from the ECSI, 20 from Puysegur, and 12 from other areas. Tables 7 and 8 describe timing of observed trips in the main areas sampled. In Cook Strait, 33 market samples were collected by NIWA scientists.

Length frequency distributions were estimated for each of the major fisheries as the weighted (by the catch weight) average of individual length samples. Length frequency data from each area were post-stratified. Data from the WCSI were stratified by area (inside or outside 25 n . miles) and time. Length frequency data from outside the line from May to July were split into weekly time periods and applied to the outside the line catch (Table 8). Length frequency data from inside the line from May to the beginning of August were scaled up to the inside the line catch by time strata described in Table 8b. Length frequency data from outside the line from August to September were split into weekly time periods throughout the season, although adjacent weeks were combined if there were fewer than 10 OP length samples available, and applied to the inside and outside the line catch as there were no length frequency data from inside the line for this period (Table 8). Length frequency data from Cook Strait are normally stratified by month, island of landing, and vessel size. However, because of patchy OP coverage in 2014, Cook Strait stratification was by two-month periods for vessels less than 40 m (June-July, and August-September), and by month for vessels greater than 40 m (Table 8). A regression tree method (described below) was used to stratify the two non-spawning fishing areas.

Catch-at-age from spawning fisheries was estimated using age-length keys derived from otolith ageing. Otoliths were available from the OP and market samples. A subsample of 748 otoliths from Cook Strait (179 OP samples, and 569 market samples) and 754 otoliths from the WCSI were selected, prepared, and read using the validated technique of Horn \& Sullivan (1996) as modified by Cordue et al. (2000). The subsample was derived by randomly selecting a set number of otoliths from each of a series of 1 cm length bins covering the bulk of the catch and then systematically selecting additional otoliths to ensure that the tails of the length distribution were represented. The chosen sample sizes approximated those necessary to produce mean weighted CVs of less than $20 \%$ across all age classes, in each of the spawning areas.

Age-length keys were constructed for each spawning fishery and applied to the total length frequency distribution to produce an age frequency distribution for the catch of each sex separately. Catch-at-age estimates were determined using the 'catch.at.age' software (Bull \& Dunn 2002). This software also incorporates data from otolith ring measurements using the consistency scoring method of Francis (2001a) in the age-length key.

Catch-at-age in both the Chatham Rise and Sub-Antarctic fisheries was estimated by sampling directly for age. This continued the approach used since 1998-99 for the Chatham Rise (Francis 2002) and since 2000-01 for the Sub-Antarctic (Ballara et al. 2003). Sampling directly for age is necessary because a single age-length key is not appropriate in non-spawning fisheries. The fisheries are spread over much of the year and there will be substantial fish growth. This means that for any given length the proportions at age will change through the fishery. To sample directly for age, observer coverage must be sufficient to provide a random sample of otoliths from the fishery. Francis (2002) suggested that even a sample size of 1200 otoliths may not be sufficient to achieve a target CV of 0.20 in some years.

On the Chatham Rise in 2013-14, 1216 otoliths out of 5993 otoliths collected (including 2304 males, 3684 females, and 5 unsexed fish) from 585 tows were selected as follows:

1. Reject all otoliths from tows catching less than 1 t of hoki.
2. For tows catching between 1 t and 4 t of hoki, select at random 1 otolith from each tow.
3. For tows catching between 4 t and 6 t of hoki, select at random 2 otoliths from each tow.
4. For tows catching between 6 t and 8 t of hoki, select at random 3 otoliths from each tow.
5. For tows catching more than 8 t of hoki, select at random 4 otoliths from each tow.

On the Sub-Antarctic in 2013-14, 1196 otoliths out of 3581 otoliths collected (including 1558 males, 1994 females, and 13 unsexed fish) from 29 tows were selected as follows:

1. Reject all otoliths from tows catching less than 1 t of hoki.
2. For tows catching between 1 t and 3 t of hoki select at random 1 otolith from each tow.
3. For tows catching between 3 t and 6 t of hoki select at random 3 otoliths from each tow.
4. For tows catching between 6 t and 12 t of hoki select at random 4 otoliths from each tow.
5. For tows catching more than 12 t of hoki select at random 5 otoliths from each tow.

The method to estimate catch-at-age for the Chatham Rise and Sub-Antarctic followed that of Francis (2002) as modified by Smith (2005). First, the regression tree method (Breiman et al. 1984) was used to stratify the two fishing areas by minimising the weighted least squares of the mean lengths (as a proxy for age) of fish in the observed tows (see Smith (2005) for details). Next, the estimated age frequencies by sex for the observed tows within each stratum were obtained by scaling the otolith ages and sexes up by the estimated numbers of hoki of each sex caught in the tow and averaging over all tows in the stratum. Finally, the number of fish caught in each stratum was estimated from the TCEPR data, and catch-at-age frequencies were calculated as the weighted average, over the strata, of the estimated age frequencies by sex. Numbers of fish were estimated from catch weights using the length-weight relationship of Francis (2003).

Estimates of catch-at-age before 1999-2000 in the Sub-Antarctic and up to 1997-98 on the Chatham Rise were based on an optimised length frequency model (OLF) described in detail by Hicks et al. (2002).

### 2.2.1 Size and age composition in spawning fisheries

## West coast South Island

Most of the 2014 catch from the WCSI fishery was dominated by larger fish of 60 to 100 cm (Figure 9) from the 2005-09 year-classes (ages 5-9), with the smaller mode comprising the 2011 year class (age 3) (Figure 10). The main length modes for female and male hoki were from $70-110 \mathrm{~cm}$ and $70-100 \mathrm{~cm}$ respectively (Figure 9), and were made up of hoki aged 5 (2009 year-class) and older. The 2010 year-class, at average length 70 cm , was poorly represented in the catch (Figures 9 and 10). The mode centred on 62 cm represented fish from the 2011 year-class. A few small from $45-55 \mathrm{~cm}$ and $30-35 \mathrm{~cm}$ hoki from the 2012 and 2013 year-classes were also caught (Figures 9 and 10).

From 2000 to 2004, the sex ratio of the WCSI catch was highly skewed (Figure 11a), with many more females caught than males. In 2005-11, as the catch of younger fish increased, the sex ratio reversed with more males than females caught, and in 2012, the catch contained about $50 \%$ males and females (Figure 11a). In 2013 and 2014 the percentage of males decreased to 45 and $47 \%$ respectively. The percentage of hoki aged 7 and older in the WCSI catch declined steeply from $68 \%$ in $2003-04$ to $16 \%$ in 2005-06, but has increased again to $47-49 \%$ in 2013 and 2014 (Figure 11b). Conversely, the percentage of small fish (less than 65 cm , which is approximately equivalent to ages 3 years and younger) by number in the WCSI catch increased from $20 \%$ in $2006-07$ to $31 \%$ in 2008-09, then decreased again to $8 \%$ in 2012-13, and $14 \%$ in 2013-14 (Figure 11b). Some of these small fish are spawning: $31 \%$ of the female fish less than 55 cm (i.e., mostly 2 year-olds) were in spawning condition (ripe and running ripe), compared to $51 \%$ of all fish (Table 9). The spawning state of male hoki is not recorded by observers, but observations from research tows in other areas suggest that a higher proportion of small males than females would be mature.

Comparisons in previous years show that there were differences in the length frequency distributions from shed samples of hoki caught inside the 25 n . mile line and at-sea samples of fish outside this area in most years, with a higher proportion of larger fish (greater than 70 cm ) from samples taken inside the line (Ballara \& O’Driscoll 2014). In 2014, the observer data from inside the line in May-July had very large fish (Figure 12).

The overall mean length of both female and male hoki decreased during the 2014 WCSI spawning season (Figure 13). The pattern of declining mean length over the spawning season used to be a common feature of the WCSI fishery, but was not observed between 1999 and 2006. The large difference between the mean lengths of males and females seen in catches from the 2004 and 2005 seasons was reduced in 2006-10 (Figure 13). The mean length at age for hoki aged from 3-8 years on the WCSI has
increased since the start of the fishery, but now is decreasing (Figure 14).
The OP data used to estimate catch-at-age was reasonably representative of the overall spatial, depth, and temporal distribution of the catch in 2013-14, although small vessels and vessels from 65-70 m were not well sampled (Figure 15).

## Cook Strait

The length distribution of female hoki from Cook Strait in 2014 had three modes from 55 to 110 cm , while males had two modes and were mainly $55-95 \mathrm{~cm}$ (see Figure 16). There was a broad age distribution of females from ages 3 to 14, while most males were ages 3-10 (see Figure 17). The modal age was 5 ( 2009 year-class), with age 3 (2011 year class) the next most abundant age-class by number (see Figure 17). Few fish from the 2010 year-class (age 4) were caught in Cook Strait in 2014, and only $16 \%$ of the catch was fish less than 65 cm (see Figure 11b).

In 2014, the OP data used to estimate catch-at-age was reasonably representative of the overall spatial and depth distribution of the catch, but temporal coverage was poor for vessels, especially for vessels less than 46 m (Figures 18 and 19, see Table 8). Market samples were also collected for vessels less than 40 m in June-August, and for vessels greater than 40 m in June-September and were well spread throughout the spawning season (Table 8, Figure 19).

Length frequency distributions by month and vessel size showed that the size distribution of the catch was broadly similar in each month and vessel size category, and that there were more males measured than females (Figure 20). The sex ratio of the Cook Strait catch has fluctuated over time, but was female dominated from 2001-05, and has been generally male-dominated since then (see Figure 11a).The apparent change in sex ratio may be related to a sampling bias, as there is some evidence that larger vessels catch a higher proportion of female hoki in Cook Strait (e.g., O’Driscoll 2012). There was a slight decreasing trend in the mean length of hoki in June and July (Figure 21). As on the WCSI, the mean length at age has increased over time in the Cook Strait fishery (Figure 22), although there is now a slight decreasing trend especially at ages 2 , and 4-9 in the males and 6-8 in the females.

The Cook Strait catch-at-age data for 2010-11 to 2012-13 were not used in the 2015 hoki stock assessment model as they were not considered representative of the commercial catch due to poor observer coverage and the rapidly changing sex ratio. With improved coverage due to reinstatement of the shore-based shed sampling programme for hoki from Cook Strait in 2014, the catch-at-age data for 2014 was included in the assessment model.

## Puysegur

In 2013-14, 20 OP samples were collected from Puysegur during the spawning season, and these were mainly fish of $45-90 \mathrm{~cm}$ (Figure 23). These fish have not been aged but are probably the 2011 year class as age $3+$ (largest mode) dominating the length frequency distribution, with some smaller fish from $45-55 \mathrm{~cm}$ from the 2012 year class, and few larger fish over 70 cm .

## East coast South Island

In the 2014 spawning season only one sample was collected from the ECSI spawning area, so no length frequency distribution was calculated. Fish from this area (Figure 24) in other years have showed a similar overall length distribution to the Chatham Rise distribution although it often has more larger fish and without the smaller length modes less than 60 cm seen on the Chatham Rise.

### 2.2.2 Size and age composition in non-spawning fisheries

## Chatham Rise

About $97 \%$ of the commercial catch, $88 \%$ of length frequency data, and $95 \%$ of the available otoliths came from the hoki target fishery in 2013-14 (Figure 25). The remainder of otoliths were from tows targeting hake, white warehou, and silver warehou. The tree-based regression split the OP data from the Chatham Rise fishery into five strata based on depth of net, longitude, and date (Table 10). The mean length of hoki on the Chatham Rise was smaller in shallower water, earlier in the season, and to the west. The length distribution of hoki from the Chatham Rise in 2013-14 was bimodal and similar for males and females (Figure 26). The catch was dominated by hoki of $50-90 \mathrm{~cm}$, with the left hand mode from the 2011 yearclass (age $2+$ ), the right hand mode from the 2007-09 year-classes (ages 4-6), and few larger, older fish. Few fish from the 2010 year class (age 3+) were caught (Figure 27).

The modal age was $2+$ (2011 year-class). More females than males were caught in 2013-14, with males comprising $40 \%$ of the catch (see Figure 11a). There was a lower proportion of large old fish (males and females) in the Chatham Rise than in other areas, with only $23 \%$ of the catch aged 7 years or older (see Figure 10b), and only $22 \%$ of these being male (see Figure 11a). About $45 \%$ of the catch by number in 2013-14 was less than 65 cm , an increase from 2012-13 (30\%), due to the high numbers of $2+$ hoki caught (see Figure 11b).

The OP data used to estimate catch-at-age was reasonably representative of the overall spatial and temporal distribution of the catch in 2013-14 (Figure 28), although coverage was lower than ideal in March-April, and June (Figure 28).

## Sub-Antarctic

About $87 \%$ of the commercial catch, $40 \%$ of length frequency data, and $53 \%$ of the available otoliths came from the hoki target fishery in 2013-14 (Figure 29). The remainder of the otoliths were from tows targeting hake, ling, oreos, southern blue whiting, squid, silver warehou, or white warehou. The treebased regression split the OP data from the Sub-Antarctic fishery into four strata based on depth of net and latitude (Table 10). The Sub-Antarctic stratum 1 was further stratified by depth of net at 400 m , as it was felt by the Hoki Working Group that squid target trawls that are in shallower depths and tend to catch smaller hoki could overwhelm catches in the overall length frequency distribution for this stratum although this did not greatly change the overall length frequency distribution. Smaller fish tended to occur on the Snares Shelf, especially in shallower water, and early on in the season.

The length distribution of hoki from the Sub-Antarctic in 2013-14 was bimodal and similar for males and females, although there were more large females (Figure 30). The catch was dominated by hoki of 45-90 cm for the males, and 45-100 for the females with the left hand mode from the 2011 year-class (age 2+), and the right hand mode primarily from the 2007-09 year-classes (ages 4-6) but with some older fish. As on the Chatham Rise, few fish from the 2010 year class (age $3+$ ) were caught (Figure 31). The modal age of females and males was $2+$ (2011 year-class). There was a higher proportion of old fish caught in the Sub-Antarctic than on the Chatham Rise (Figure 31), but the catch of fish less than 65 cm increased markedly from $8 \%$ in 2012-13 to $42 \%$ in 2013-14 (see Figure 11b). About $46 \%$ of the fish caught in the Sub-Antarctic in 2013-14 were males (see Figure 11a).

The OP sampling in the Sub-Antarctic was reasonably representative of the overall spatial and temporal distribution of the catch (Figure 32), with good sampling in most months except March (see Table 7). Coverage was good on the Snares Shelf, but lower in statistical area 603.

## Problems with estimation of catch-at-age in non-spawning fisheries

In addition to the problems associated with whether OP coverage is representative of the catch, there is an on-going problem with selection of otoliths. Observers collect otoliths from 10 fish out of the 50-150
sampled for length measurement (and otoliths from three fish in the spawning fisheries). As in previous years (e.g., Ballara et al. 2008), a rank sums test showed that the observers tended to select larger fish for extraction of otoliths from the Sub-Antarctic and Chatham Rise in 2013-14 (Figure 33). This introduces a bias into the age estimates which is difficult to correct. Electronic aids now being used to help observerstake random samples for otoliths should have solved this problem.

### 2.2.3 Comparison of size and age composition between main areas

Length distributions from the main fisheries in 2013-14 are compared in Figure 34. The catch in all areas was mainly fish from 45 to 90 cm . The 2011 year class ( $50-65 \mathrm{~cm}$ ) dominated the length frequency distribution on the Chatham Rise and Sub-Antarctic as $2+$ fish. In the spawning areas, larger hoki from ages 5-7 were most abundant, with a smaller mode of fish from the 2011 year class at age 3. In all areas there were few hoki from the 2010 year class. Most fish on the Chatham Rise were less than 80 cm . Large female fish (over 90 cm ) were proportionately more abundant in Cook Strait, ECNI, SubAntarctic, and WCSI.

## 3. HOKI RESEARCH

### 3.1 Resource surveys

### 3.1.1 Trawl surveys

## Chatham Rise

No Chatham Rise trawl survey was carried out in January 2015. This was the first year in the time-series (going back to 1992) when there has not been a survey of this area.

## Sub-Antarctic

The sixteenth survey in the Tangaroa summer trawl time series was carried out from 26 November to 23 December 2014. There were 87 successful tows, of which 76 were in the core $300-800$ depth strata. Previous surveys in the summer series were in November-December 1991-1993, and 2000-2009, and 2011-2012. An autumn series has also been carried out in the same area in March-June 1992, 1993, 1996, and 1998.

The total biomass of hoki in the core strata in 2014 decreased by $43 \%$ from the 2012 survey to 31.3 Kt (Table 11). The estimates for age $1+$ (2013 year-class) and age $2+$ ( 2012 year-class) were low. The age $3+$ (2011 year class) was evident in the length frequency distribution, but not particularly strong. Compared to the 2012 survey, there was a decrease in biomass from most strata in 2014 except for 3B and 5A south of the Snares Shelf, and stratum 14 east of Campbell Island. The estimated biomass in 2014 was the lowest estimate since 2006. There was no evidence of unusual catchability in 2014 based on other key species.

Measured hoki in 2014 ranged from 37-111 cm (Figure 35). The main adult mode consisted of fish from the 2009-04 year-classes at ages 5-10, with some larger older fish (Figures 35 and 36). There were very few fish in the $69-74 \mathrm{~cm}$ range, reflecting lack of $4+$ hoki ( 2010 year class). The mode at $38-48 \mathrm{~cm}$ corresponds to $1+$ hoki ( 2013 year-class) and these small fish were mainly caught at Puysegur and on the Stewart-Snares shelf (Figures 35 and 36). Hoki from 49-59 and 60-69 cm represented 2+ and 3+ hoki (the 2012 and 2011 year-classes) respectively (Figures 35 and 36). The 2014 Sub-Antarctic trawl survey included additional deepwater strata from $800-1000 \mathrm{~m}$. Some large hoki (typically longer than 80 cm ) were caught deeper than the core survey boundary at 800 m , but the deepwater strata only contributed a small percentage ( $1.3 \%$ ) of the total hoki biomass.

The summer Sub-Antarctic trawl survey series shows large annual changes in numbers-at-age
(particularly between 2006 and 2007) which cannot be explained by changes in abundance, and are suggestive of a change in catchability for the survey. There is currently a project in progress looking at potential reasons for changes in catchability (Project DEE2014-01).

### 3.1.2 Acoustic surveys

No acoustic surveys for hoki were carried out in 2014.

## 4. CONCLUSIONS

The total reported hoki catch in 2013-14 was $146335 \mathrm{t}, 3700 \mathrm{t}$ below the TACC of 150000 t , and 20 000 t higher than the catch in 2012-13. Catches in 2013-14 increased in the main western areas and decreased in the main eastern areas. The WCSI was the largest hoki fishery for the fourth consecutive season, followed by the non-spawning fishery on the Chatham Rise

Length and age frequency distributions from the commercial fishery show that most of the catch in 201314 was fish from 45 to 90 cm . Hoki from the 2011 year class ( $50-65 \mathrm{~cm}$ ) dominated the length frequency distribution on the Chatham Rise and Sub-Antarctic as age 2+ fish. In the spawning areas, larger hoki from ages 5-7 were most abundant, with a smaller mode of fish from the 2011 year class at age 3. In all areas there were few fish from the 2010 year class. The percentage of small fish in the catch increased in 2013-14, mainly due to the presence of the 2011 year class. Most fish caught on the Chatham Rise in 2013-14 were less than 80 cm , and the largest hoki came from the WCSI, east coast North Island, SubAntarctic, and Cook Strait fisheries.

The relative biomass index for hoki from the core strata in the 2014 Sub-Antarctic trawl survey decreased by $43 \%$ from 2012. The estimate for age $1+$ and $2+$ (2013 and 2012 year-classes) was low, and the age $3+$ (2011 year class) was evident in the length frequency distribution but not particularly strong.

## 5. ACKNOWLEDGMENTS

This work was funded by Ministry for Primary Industries Research Projects DEE2010-02HOKD, MID2010-01E and DEE201402. It also incorporates trawl survey results from Ministry for Primary Industries Research Project MDT201002B. Thanks to the many scientific and industry staff who contributed to the collection and analysis of data used in this report. We especially thank Colin Sutton for otolith preparation, and Peter Horn and Debbie Hulston for their ageing work. We also thank Peter Horn for reviewing this report.

## 6. REFERENCES

Annala, J.H. (comp.) (1990). Report from the Fishery Assessment Plenary, April-May 1990: stock assessments and yield estimates. 165 p. (Unpublished report held in NIWA library, Wellington.)
Ballara, S.L.; O'Driscoll, R.L. (2014). Catches, size, and age structure of the 2011-12 hoki fishery, and a summary of input data used for the 2013 stock assessment. New Zealand Fisheries Assessment Report 2014/05. 117 p.
Ballara, S.L.; O’Driscoll, R.L. (2015). Fish and invertebrate bycatch and discards in New Zealand hoki, hake, and ling fisheries from 1990-91 until 2012-13. New Zealand Aquatic Environment and Biodiversity Report No. 161.
Ballara, S.L.; O'Driscoll, R.L.; Fu, D. (2008). Catches, size, and age structure of the 2005-06 hoki fishery, and a summary of input data used for the 2007 stock assessment. New Zealand Fisheries Assessment Report 2008/62. 90 p.
Ballara, S.L.; O’Driscoll, R.L.; Phillips, N.L.; Livingston, M.E.; Smith, M.H.; Kim, S.W. (2003). Catches,
size, and age structure of the 2001-02 hoki fishery, and a summary of input data used for the 2003 stock assessment. New Zealand Fisheries Assessment Report 2003/42. 77 p.
Bentley, N.; Kendrick, T.H.; Starr, P.J.; Breen, P.A. (2012). Influence plots and metrics: tools for better understanding fisheries catch-per-unit-effort standardizations. ICES Journal of Marine Science 69(1): 84-88.
Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. (1984). Classification and regression trees. Wadsworth, Belmont, California. 358 p.
Bull, B.; Dunn, A. (2002). Catch-at-age user manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)
Bull, B.; Francis, R.I.C.C.; Dunn, A.; McKenzie, A.; Gilbert, D.J.; Smith, M.H.; Bian, R. (2012). CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.30-2012/03/21. NIWA Technical Report 135. 280 p.
Butterworth, D.; Hilary, R.; Ianelli, J. (2014). Report on the review of the New Zealand hoki stock assessment model. Report to the Ministry for Primary Industries, 4 March 2014. 17 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
Chambers, J.M.; Hastie, T.J. (1991). Statistical models in S. Wadsworth \& Brooks-Cole, Pacific Grove, CA. 608 p.
Cordue, P.L.; Ballara, S.L.; Horn P.L. (2000). Hoki ageing: recommendation of which data to routinely record for hoki otoliths. Final Research Report for Ministry of Fisheries Research Project MOF 1999/01 (Unpublished report held by Ministry for Primary Industries, Wellington.)
Dunford, A.J.; O'Driscoll, R.L.; Oeffner, J. (2015). Improvements in estimating an acoustic target strength-length relationship for hoki (Macruronus novaezelandiae). Fisheries Research 162: 1219.

Dunn, A. (2002). Updated catch-per-unit-effort indices for hoki (Macruronus novaezelandiae) on the west coast South Island, Cook Strait, Chatham Rise, and sub-Antarctic for the years 1990 to 2001. New Zealand Fisheries Assessment Report 2002/47. 51 p.
Francis, R.I.C.C. (1999). The impact of correlations in standardised CPUE indices. New Zealand Fisheries Assessment Research Document 99/42. 30 p. (Unpublished report held in NIWA library, Wellington.)
Francis, R.I.C.C. (2001a). Improving the consistency of hoki age estimation. New Zealand Fisheries Assessment Report 2001/12. 18 p.
Francis, R.I.C.C. (2001b). Orange roughy CPUE on the South and East Chatham Rise. New Zealand
Fisheries Assessment Report 2001/26.30 p.
Francis, R.I.C.C. (2002). Estimating catch at age in the Chatham Rise hoki fishery. New Zealand Fisheries Assessment Report 2002/9. 22 p.
Francis, R.I.C.C. (2003). Analyses supporting the 2002 stock assessment of hoki. New Zealand Fisheries Assessment Report 2003/5. 34 p.
Francis, R.I.C.C. (2007). Assessment of hoki (Macruronus novaezelandiae) in 2006. New Zealand Fisheries Assessment Report 2007/15. 99 p.
Francis, R.I.C.C. (2008). Assessment of hoki (Macruronus novaezelandiae) in 2007. New Zealand Fisheries Assessment Report 2008/4. 109 p.
Francis R.IC.C. (2009). Assessment of hoki (Macruronus novaezelandiae) in 2008. New Zealand Fisheries Assessment Report 2009/7. 80 p.
Francis, R.I.C.C.; Haist, V.; Bull, B. (2003). Assessment of hoki (Macruronus novaezelandiae) in 2002 using a new model. New Zealand Fisheries Assessment Report 2003/6. 69 p.
Francis, R.I.C.C.; Neil, H.L.; Horn, P.L.; Gillanders, B.; Marriott, P.; Vorster, J. (2011). A pilot study to evaluate the utility of otolith microchemistry for determining natal fidelity in New Zealand hoki. Final Research Report for Ministry of Fisheries Research Project HOK2006/05 Objective 1. 24 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
Hicks, A.C.; Cordue, P.L.; Bull, B. (2002). Estimating proportion at age and sex in the commercial catch of hoki (Macruronus novaezelandiae) using length frequency data. New Zealand Fisheries Assessment Report 2002/43. 51 p.
Hicks, A.C.; Gilbert, D.J. (2002). Stock discrimination of hoki (Macruronus novaezelandiae) based on otolith ring measurements. New Zealand Fisheries Assessment Report 2002/2. 31 p.
Hicks, A.C.; Smith, P.J.; Horn, P.L.; Gilbert, D.J. (2003). Differences in otolith measurements and gill
raker counts between the two major spawning stocks of hoki (Macruronus novaezelandiae) in New Zealand. New Zealand Fisheries Assessment Report 2003/7. 23 p.
Horn, P.L. (2011). Natal fidelity: a literature review in relation to the management of the New Zealand hoki (Macruronus novaezelandiae) stocks. New Zealand Fisheries Assessment Report 2011/34. 18 p.

Horn, P.L.; Sullivan, K.J. (1996). Validated ageing methodology using otoliths, and growth parameters for hoki (Macruronus novaezelandiae) in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 30: 161-174.
Kalish, J.M.; Livingston, M.E.; Schofield, K.A. (1996). Trace elements in the otoliths of New Zealand blue grenadier (Macruronus novaezelandiae) as an aid to stock discrimination. Marine and Freshwater Research 47: 537-542.
Livingston, M.E. (1990). Stock structure of New Zealand hoki (Macruronus novaezelandiae) New Zealand Fisheries Assessment Research Document 90/8. 21 p. (Unpublished report held in NIWA library, Wellington.)
Livingston, M.E. (1997). The stock structure of hoki: hypotheses and assumptions revised. (Unpublished report presented to the Hoki Working Group 1997, held by Ministry for Primary Industries, Wellington.)
Livingston. M.E.; Clark, M.R.; Baird, S-J. (2002). Trends in bycatch of major fisheries in depths over 200 m on the Chatham Rise, for fishing years 1989/90 to 1998/99. Final Research Report for Ministry of Fisheries Research Project ENV1999/05. (Unpublished report held by Ministry for Primary Industries, Wellington.)
Livingston, M.E.; Schofield, K.A. (1996). Stock discrimination of hoki (Macruronus novaezelandiae, Merluccidae) in New Zealand waters using morphometrics. New Zealand Journal of Marine and Freshwater Research 30: 197-208.
McKenzie, A. (2013). Assessment of hoki (Macruronus novaezelandiae) in 2012. New Zealand Fisheries Assessment Report 2013/27. 65 p.
McKenzie, A. (2015a). Assessment of hoki (Macruronus novaezelandiae) in 2013. New Zealand Fisheries Assessment Report 2015/08. 73 p.
McKenzie, A. (2015b). Assessment of hoki (Macruronus novaezelandiae) in 2014. New Zealand Fisheries Assessment Report 2015/09. 68 p.
McKenzie, A (2015c) Initial assessment results for hoki in 2015. DWWG2015-17. 20 p. (Unpublished report held by the Ministry for Primary Industries, Wellington).
McKenzie, A. (2015d). The hoki review: status of follow-up work. Deepwater Working Group Document 2015/02. 19 February 2015. 4 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
O'Driscoll, R.L. (2012). Acoustic survey of spawning hoki in Cook Strait during winter 2011. New Zealand Fisheries Assessment Report 2012/17. 50 p.
O'Driscoll, R.L.; Bagley, N.W.; Ballara, S.L.; Ladroit, Y. (2015a). Trawl and acoustic survey of hoki and middle depth fish abundance on the west coast South Island, July-August 2013 (TAN1308). New Zealand Fisheries Assessment Report 2015/20. 104 p.
O’Driscoll, R.L.; Ballara, S.L.; Bagley, N.W. (2015b). Review of performance of west coast South Island trawl/acoustic survey of deepwater stocks. Final Research Report for Ministry for Primary Industries Research Project SEA2014/10. April 2015. 86 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
O’Driscoll, R.L.; Ladroit, Y.; Dunford, A.J.: MacGibbon, D.J. (2015c). Acoustic survey of spawning hoki in Cook Strait and Pegasus Canyon during winter 2013. New Zealand Fisheries Assessment Report 2015/04. 51 p.
R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
Smith, M.H. (2005). Direct estimation of year class frequencies for the non-spawning hoki fisheries with estimates of the coefficients of variation. New Zealand Fisheries Assessment Report 2005/14. 26 p.
Smith, P.J.; Bull, B.; McVeagh, S.M. (2001). Evaluation of meristics characters for determining hoki stock relationships. Final Research Report for Ministry of Fisheries Research Project HOK 1999/05 Objective 1. (Unpublished report held by Ministry for Primary Industries, Wellington.)

Smith, P.J.; McVeagh, S.M.; Ede, A. (1996). Genetically isolated stocks of orange roughy (Hoplostethus atlanticus), but not of hoki (Macruronus novaezelandiae), in the Tasman Sea and southwest Pacific Ocean around New Zealand. Marine Biology 125: 783-793.
Smith, P.J.; Patchell, G.; Benson, P.G. (1981). Genetic tags in the New Zealand hoki Macruronus novaezelandiae. Animal Blood Groups and Biochemical Genetics 12: 37-45.
Stevens, D.W.; O’Driscoll, R.L.; Ladroit, Y.; Ballara, S.L.; MacGibbon, D.J.; Horn, P.L. (2015). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2014 (TAN1401). New Zealand Fisheries Assessment Report 2015/19. 119 p.

## TABLES

Table 1: Reported trawl catches ( $t$ ) from 1969 to 1987-88; 1969-83 by calendar year, 1983-84 to 1987-88 by fishing year (1 October to 30 September). Source, FSU data.

| Year | U.S.S.R. | Japan | South Korea | New Zealand |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Domestic | Chartered | Total |
| 1969 |  | 95 |  |  |  | 95 |
| 1970 |  | 414 |  |  |  | 414 |
| 1971 |  | 411 |  |  |  | 411 |
| 1972 | 7300 | 1636 |  |  |  | 8936 |
| 1973 | 3900 | 4758 |  |  |  | 8658 |
| 1974 | 13700 | 2160 |  | 125 |  | 15985 |
| 1975 | 36300 | 4748 |  | 62 |  | 41110 |
| 1976 | 41800 | 24830 |  | 142 |  | 66772 |
| 1977 | 33500 | 54168 | 9865 | 217 |  | 97750 |
| 1978* | $2028+$ | 1296 | 4580 | 678 |  | 8581 |
| 1979 | 4007 | 8550 | 1178 | 2395 | 7970 | 24100 |
| 1980 | 2516 | 6554 |  | 2658 | 16042 | 27770 |
| 1981 | 2718 | 9141 | 2 | 5284 | 15657 | 32802 |
| 1982 | 2251 | 7591 |  | 6982 | 15192 | 32018 |
| 1983 | 3853 | 7748 | 137 | 7706 | 20697 | 40141 |
| 1983-84 | 4520 | 7897 | 93 | 9229 | 28668 | 50407 |
| 1984-85 | 1547 | 6807 | 35 | 7213 | 28068 | 43670 |
| 1985-86 | 4056 | 6413 | 499 | 8280 | 80375 | 99623 |
| 1986-87 | 1845 | 4107 | 6 | 8091 | 153222 | 167271 |
| 1987-88 | 2412 | 4159 | 10 | 7078 | 216680 | 230339 |

* Catches for foreign licensed and New Zealand chartered vessels from 1978 to 1984 are based on estimated catches from vessel logbooks. Few data are available for the first 3 months of 1978 because these vessels did not begin completing these logbooks until 1 April 1978.
+ Soviet hoki catches are taken from the estimated catch records and differ from official Ministry for Primary Industries statistics. Estimated catches are used because of the large amount of hoki converted to meal and not recorded as processed fish.

Table 2: Reported catch (t) from QMS ${ }^{1}$, estimated catch (t) data, and TACC (t) for HOK 1 from 1986-87 to 2013-14. Estimated catches include TCEPR and CELR data (from 1989-90), LCER data (from 200304), NCELR data (from 2006-07), and TCER and LTCER data (from 2007-08).

|  | Estimated | Reported catch (MHR) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Year | catch | Exclude HOKET | Include HOKET | TACC |
| $1986-87$ | 175000 |  | 158171 | 250000 |
| $1987-88$ | 255000 |  | 216206 | 250000 |
| $1988-89$ | 210000 |  | 208500 | 250000 |
| $1989-90$ | 210000 |  | 208851 | 251884 |
| $1990-91$ | 215000 |  | 212720 | 201897 |
| $1991-92$ | 215000 |  | 212167 | 201897 |
| $1992-93$ | 195000 |  | 191994 | 202155 |
| $1993-94$ | 190000 |  | 192385 | 202155 |
| $1994-95$ | 168000 |  | 176787 | 220350 |
| $1995-96$ | 194000 |  | 209639 | 240000 |
| $1996-97$ | 230000 |  | 246756 | 250000 |
| $1997-98$ | 261000 |  | 269239 | 250000 |
| $1998-99$ | 234000 |  | 244528 | 250000 |
| $1999-00$ | 237000 |  | 242423 | 250000 |
| $2000-01$ | 230625 |  | 229862 | 250000 |
| $2001-02$ | 200054 | 195492 | 195506 | 200000 |
| $2002-03$ | 182560 | 184659 | 184668 | 200000 |
| $2003-04$ | 133764 | 135784 | 135787 | 180000 |
| $2004-05$ | 102885 | 104364 | 106189 | 100000 |
| $2005-06$ | 101984 | 104385 | 105965 | 100000 |
| $2006-07$ | 97790 | 101009 | 102861 | 100000 |
| $2007-08$ | 87815 | 89318 | 91045 | 90000 |
| $2008-09$ | 87598 | 88805 | 89475 | 90000 |
| $2009-10$ | 105105 | 107209 | 107209 | 110000 |
| $2010-11$ | 115782 | 13805 | 118805 | 120000 |
| $2011-12$ | 126184 | 130108 | 130108 | 130000 |
| $2012-13$ | 127962 | 146335 | 132618 | 130000 |
| $2013-14$ | 143706 |  | 146335 | 150000 |

1. Discrepancies between QMS data and estimated catches from 1986 to 1990 arose from incorrect surimi conversion factors. The estimated catch in those years was corrected from conversion factors measured each year by Ministry observers on the WCSI fishery. Since 1990 the current conversion factor of 5.8 has been used, and the total catch reported to the QMS is considered to be more representative of the true level of catch. From 2000-01 MHR catches have been shown including and excluding HOK ET catches (catches outside the EEZ).

Table 3: Estimated total catch (t) of hoki by area ${ }^{1}$, 1988-89 to 2013-14. Estimated (TCEPR and CELR) catches were scaled to reported (QMR or MHR) catch totals. Data also includes LCER (from 2003-04), and NCELR estimated data (from 2006-07), and TCER and LTCER data (from 2007-08).

|  | Spawning fisheries |  |  |  | Non-spawning fisheries |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing |  |  | Cook |  | Sub- | Chatham |  |  |  | Total |
| Year | WCSI | Puysegur | Strait | ECSI | Antarctic | Rise | ECNI | WCNI | Other ${ }^{2}$ | catch |
| 1988-89 | 188000 | 3500 | 7000 | - | 5000 | 5000 | - | - | - | 208500 |
| 1989-90 | 165000 | 8000 | 14000 | - | 10000 | 13000 | - | - | - | 210000 |
| 1990-91 | 154000 | 4000 | 26500 | 1000 | 18000 | 11500 | - | - | - | 215000 |
| 1991-92 | 105000 | 5000 | 25000 | 500 | 34000 | 45500 | - | - | - | 215000 |
| 1992-93 | 98000 | 2000 | 21000 | - | 26000 | 43000 | 2000 | - | 3000 | 195000 |
| 1993-94 | 113000 | 2000 | 37000 | - | 12000 | 24000 | 2000 | - | 1000 | 191000 |
| 1994-95 | 80000 | 1000 | 40000 | - | 13000 | 39000 | 1000 | - | - | 174000 |
| 1995-96 | 73000 | 3000 | 67000 | 1000 | 12000 | 49000 | 3000 | - | 2000 | 210000 |
| 1996-97 | 91000 | 5000 | 61000 | 1500 | 25000 | 56500 | 5000 | - | 1000 | 246000 |
| 1997-98 | 107000 | 2000 | 53000 | 1000 | 24000 | 75000 | 4000 | - | 3000 | 269000 |
| 1998-99 | 94562 | 2883 | 45252 | 1977 | 23753 | 73594 | 2315 | 94 | 97 | 244527 |
| 1999-00 | 102721 | 2880 | 43192 | 2351 | 33772 | 56014 | 1387 | 98 | 4 | 242419 |
| 2000-01 | 102235 | 6798 | 36298 | 2411 | 30076 | 49847 | 2035 | 147 | - | 229847 |
| 2001-02 | 92719 | 5322 | 23976 | 2971 | 30175 | 39151 | 1147 | 39 | - | 195500 |
| 2002-03 | 73856 | 5948 | 36713 | 7382 | 20199 | 39092 | 929 | 532 | 8 | 184659 |
| 2003-04 | 45112 | 1158 | 41034 | 2140 | 11635 | 33650 | 880 | 126 | - | 135735 |
| 2004-05 | 32647 | 5501 | 24485 | 4259 | 6337 | 30434 | 516 | 36 | - | 104215 |
| 2005-06 | 38281 | 1457 | 21405 | 653 | 6961 | 34944 | 673 | 8 | - | 104382 |
| 2006-07 | 33328 | 408 | 20113 | 1006 | 7661 | 37813 | 667 | 8 | - | 101004 |
| 2007-08 | 20928 | 308 | 18470 | 2323 | 8708 | 37920 | 640 | 19 | - | 89316 |
| 2008-09 | 20548 | 233 | 17535 | 1054 | 9807 | 39011 | 588 | 25 | - | 88801 |
| 2009-10 | 36349 | 272 | 17880 | 669 | 12275 | 39138 | 618 | 7 | - | 107208 |
| 2010-11 | 48373 | 1176 | 14937 | 1625 | 12655 | 38447 | 1588 | 2 | - | 118803 |
| 2011-12 | 54532 | 1308 | 15859 | 2531 | 15743 | 39246 | 858 | 31 | - | 130108 |
| 2012-13 | 56221 | 955 | 19390 | 3312 | 14099 | 36538 | 1051 | 9 | - | 131575 |
| 2013-14 | 69396 | 779 | 18399 | 2750 | 19925 | 33750 | 1326 | 9 | - | 146334 |

[^0]Table 4: Variables retained in order of decreasing explanatory value by each lognormal CPUE model for each area and the corresponding total $R^{2}$ value.

WCSI: TCEPR tow-by-tow, target hoki

| Variable | R-squared |
| :--- | ---: |
| Year | 6.44 |
| Day of year | 16.80 |
| Vessel | 24.53 |
| Mid time of tow | 27.81 |


| Variable | R-squared |
| :--- | ---: |
| Year | 1.84 |
| Day of year | 16.28 |
| Vessel | 21.95 |

## WCSI: Observer catch, target hoki

| Variable | R-squared |
| :--- | ---: |
| Year | 6.59 |
| Vessel | 16.04 |
| Day of year | 24.29 |
| Start time of tow | 27.33 |

Cook Strait: Observer catch, target hoki

| Variable | R-squared |
| :--- | ---: |
| Year | 4.10 |
| Vessel | 11.24 |
| Day of year | 16.63 |

Chatham Rise: TCEPR tow-by-tow, target hoki
Chatham Rise: Observer catch, target hoki

| Variable | R-squared |
| :--- | ---: |
| Year | 10.40 |
| Vessel | 15.10 |
| Start time of tow | 18.32 |
| Duration | 21.24 |
| Month | 22.49 |


| Variable | R-squared |
| :--- | ---: |
| Year | 12.48 |
| Vessel | 16.10 |
| Start time of tow | 18.86 |
| Duration | 21.38 |
| Month | 22.65 |

Sub-Antarctic: TCEPR tow-by-tow, target hok

| Variable | R-squared |
| :--- | ---: |
| Year | 6.61 |
| Start time of tow | 12.18 |
| Vessel | 16.62 |
| Day of year | 20.42 |
| Duration | 22.95 |
| Statistical area | 24.71 |
| Depth of net | 25.76 |


| Variable | R-squared |
| :--- | ---: |
| Year | 8.68 |
| Start time of tow | 14.24 |
| Vessel | 18.73 |
| Duration | 21.37 |
| Depth of net | 23.57 |
| Month | 24.99 |
| Statistical area | 27.06 |

Table 5: Observer coverage 2013-14 by area, BT (bottom trawl), BPT (bottom pair trawl), MW (midwater tow), MPT (midwater pair trawl) trawl methods only. WCSI, Cook Strait and ECSI are for June to September only.

## (a) All target species tows

| Area | Number of vessels |  |  | Number of tows |  |  | Catch (t) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Observed | Percent | All | Observed | Percent | All | Observed | Percent |
| Chatham Rise | 56 | 19 | 33.9 | 5835 | 656 | 11.2 | 33743 | 5380 | 15.9 |
| Cook Strait | 30 | 3 | 10.0 | 1243 | 76 | 6.1 | 14595 | 1178 | 8.1 |
| ECNI | 50 | 7 | 14.0 | 2474 | 13 | 0.5 | 1314 | 7 | 0.5 |
| ECSI | 16 | 1 | 6.2 | 181 | 1 | 0.6 | 2744 | 3 | 0.1 |
| Macquarry | 2 | 1 | 50.0 | 2 | 1 | 50.0 | 1 | - | - |
| Puysegur | 14 | 8 | 57.1 | 180 | 49 | 27.2 | 779 | 248 | 31.9 |
| Sub-Antarctic | 31 | 20 | 64.5 | 3387 | 458 | 13.5 | 19925 | 2766 | 13.9 |
| WCNI | 17 | 1 | 5.9 | 93 | 1 | 1.1 | 9 | - | - |
| WCSI | 40 | 17 | 42.5 | 4639 | 851 | 18.3 | 67817 | 17792 | 26.2 |
| All areas combined | 108 | 34 | 31.5 | 19661 | 2126 | 10.8 | 146310 | 27618 | 18.9 |

## (b) Target hoki tows

|  | Number of vessels |  |  | Number of tows |  |  | Catch (t) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area | All | Observed | Percent | All | Observed | Percent | All | Observed | Percent |
| Chatham Rise | 23 | 11 | 47.8 | 4122 | 579 | 14.0 | 32912 | 5103 | 15.5 |
| Cook Strait | 19 | 3 | 15.8 | 1169 | 76 | 6.5 | 14588 | 1178 | 8.1 |
| ECNI | 20 | 4 | 20.0 | 466 | 6 | 1.3 | 822 | 5 | 0.6 |
| ECSI | 13 | 1 | 7.7 | 164 | 1 | 0.6 | 2682 | 3 | 0.1 |
| Macquarry | - | - | - | - | - | - | - | - | - |
| Puysegur | 4 | 1 | 25.0 | 47 | 7 | 14.9 | 355 | 69 | 19.3 |
| Sub-Antarctic | 14 | 13 | 92.9 | 1874 | 182 | 9.7 | 17315 | 1685 | 9.7 |
| WCNI | 1 | 1 | 100.0 | 5 | 1 | 20.0 | 1 | - | - |
| WCSI | 34 | 17 | 50.0 | 3904 | 742 | 19.0 | 65513 | 17114 | 26.1 |
| All areas combined | 63 | 30 | 47.6 | 12836 | 1614 | 12.6 | 139476 | 25393 | 18.2 |

Table 6: Bycatch rates (in parentheses) on vessels with Observer Programme observers in the hoki fishery for tows targeting hoki from 1990-91 to 2013-14. The WCSI (bottom and midwater trawls), Cook Strait, and ECSI data cover the spawning season (June-September) only. -, less than 0.1 t (except for Cook Strait 1994-95 and 1996-97, Puysegur 1997-98 to 2008-09, and ECSI 2006-07 for which there are no observer data). Bycatch rates not calculated where observed hoki catch is less than $\mathbf{1 0 0} \mathrm{t}$. Species chosen are the top eight by observed catch in an area. Species include: BAR, barracouta; CSQ, leafscale gulper shark; FRO, frostfish; GSP, pale ghost shark; HAK, hake; HOK, hoki; JAV, javelinfish; JMA, jack mackerels; LIN, ling; RAT, rattails; RCO, red cod; SPD, spiny dogfish; SPO, rig; SQU, arrow squid; SWA, silver warehou; and WWA, white warehou.
(a) WCSI (bottom trawl)

| Year | Catch in t (\% of hoki catch) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HOK |  | HAK |  | JAV |  | LIN |  | RAT |  | SPD |  | SQU |  | SWA | Other |
| 1990-91 | 1046 | 25 | (2.4) | 1 | (0.1) | 56 | (5.3) | 2 | (0.2) | 8 | (0.8) | 11 | (1.1) | 67 | (6.4) | 67 (3.7) |
| 1991-92 | 516 | 7 | (1.4) | 1 | (0.2) | 44 | (8.5) | 2 | (0.4) | 5 | (1) | 13 | (2.5) | 9 | (1.7) | 9 (8.5) |
| 1992-93 | 3375 | 82 | (2.4) | , | (0) | 79 | (2.3) | 6 | (0.2) | 30 | (0.9) | 4 | (0.1) | 78 | (2.3) | 78 (1.8) |
| 1993-94 | 1503 | 52 | (3.5) |  | (0.3) | 56 | (3.7) | 4 | (0.3) | 28 | (1.9) | 17 | (1.1) | 23 | (1.5) | 23 (3.9) |
| 1994-95 | 179 | 24 | (13.4) |  | (0.6) | 30 | (16.8) | 3 | (1.7) | 7 | (3.9) | 8 | (4.5) | 9 | (5) | 9 (14) |
| 1995-96 | 360 | 48 | (13.3) | - |  | 31 | (8.6) | 2 | (0.6) | 43 | (11.9) | 1 | (0.3) | 26 | (7.2) | 26 (7.8) |
| 1996-97 | 1 |  | (-) |  | (-) | - | (-) | - | (-) | - | (-) | - | (-) | - | (-) | - (-) |
| 1997-98 | 673 | 69 | (10.2) | 3 | (0.4) | 45 | (6.7) | 5 | (0.7) | 15 | (2.2) | 1 | (0.2) | 19 | (2.8) | 19 (4.5) |
| 1998-99 | 2660 | 244 | (9.2) | 19 | (0.7) | 159 | (6) | 24 | (0.9) | 67 | (2.5) | 3 | (0.1) | 85 | (3.2) | 85 (4.1) |
| 1999-00 | 3033 | 438 | (14.4) |  | (0.6) | 122 | (4) | 26 | (0.9) | 35 | (1.1) | 4 | (0.1) | 84 | (2.8) | 84 (5.8) |
| 2000-01 | 1462 | 54 | (3.7) | 4 | (0.3) | 66 | (4.5) | 6 | (0.4) | 13 | (0.9) | 6 | (0.4) | 57 | (3.9) | 57 (2.5) |
| 2001-02 | 7493 | 592 | (7.9) | 33 | (0.4) | 306 | (4.1) | 51 | (0.7) | 80 | (1.1) | 39 | (0.5) | 60 | (0.8) | 60 (3.7) |
| 2002-03 | 2609 | 213 | (8.2) | 17 | (0.6) | 139 | (5.3) | 19 | (0.7) | 28 | (1.1) | 21 | (0.8) | 49 | (1.9) | 49 (5.4) |
| 2003-04 | 2034 | 335 | (16.5) | 32 | (1.6) | 270 | (13.3) | 20 | (1) | 28 | (1.4) | 37 | (1.8) | 182 | (8.9) | 182 (14.3) |
| 2004-05 | 1507 | 74 | (4.9) | 5 | (0.3) | 126 | (8.4) | 5 | (0.3) | 23 | (1.5) | 13 | (0.9) | 74 | (4.9) | 74 (7.7) |
| 2005-06 | 2242 | 102 | (4.5) | 26 | (1.2) | 141 | (6.3) | 17 | (0.8) | 50 | (2.2) | 18 | (0.8) | 70 | (3.1) | 70 (6.4) |
| 2006-07 | 1375 | 71 | (5.2) | 12 | (0.9) | 38 | (2.8) | 11 | (0.8) | 7 | (0.5) | 11 | (0.8) | 42 | (3) | 42 (4.5) |
| 2007-08 | 1297 | 23 | (1.8) | 8 | (0.6) | 43 | (3.3) | 6 | (0.5) | 28 | (2.2) | 5 | (0.4) | 36 | (2.8) | 36 (2.5) |
| 2008-09 | 61 | 31 | (50.8) | 2 | (3.3) | 4 | (6.6) | - | (-) | 4 | (6.6) | - | (-) | 1 | (1.6) | 1 (16.4) |
| 2009-10 | 3888 | 67 | (1.7) | 14 | (0.4) | 132 | (3.4) | 9 | (0.2) | 73 | (1.9) | 6 | (0.2) | 41 | (1.1) | 41 (1.6) |
| 2010-11 | 2961 | 194 | (6.5) | 18 | (0.6) | 154 | (5.2) | 21 | (0.7) | 49 | (1.6) | 6 | (0.2) | 75 | (2.5) | 75 (4.3) |
| 2011-12 | 5284 | 169 | (3.2) |  | (0.4) | 217 | (4.1) | 16 | (0.3) | 136 | (2.6) | 14 | (0.3) | 61 | (1.1) | 61 (1.6) |
| 2012-13 | 6874 | 865 | (12.6) | 98 | (1.4) | 449 | (6.5) | 82 | (1.2) | 158 | (2.3) | 43 | (0.6) | 102 | (1.5) | 102 (5.3) |
| 2013-14 | 4996 | 554 | (11.1) | 67 | (1.3) | 278 | (5.6) | 50 | (1.0) | 55 | (1.1) | 34 | (0.7) | 96 | (1.9) | 96 (6.5) |

(b) WCSI (midwater trawls)


Table 6: continued.
(c) Cook Strait (midwater trawls)

| Year | Catch in t (\% of hoki catch) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HOK | CSQ | LIN | RAT | RCO | SPD | SPO | SWA | Other |
| 1992-93 | 107 | - (-) | - (-) | - (-) | - (-) | 1 (0.9) | - (-) | - (-) | - (-) |
| 1993-94 | 495 | - (-) | 6 (1.2) | - (-) | - (-) | 1 (0.2) | - (-) | - (-) | (0.2) |
| 1995-96 | 734 | - (-) | 2 (0.3) | - (-) | (-) | 13 (1.8) | - (-) | - (-) | - (-) |
| 1997-98 | 3435 | - (-) | 7 (0.2) | (-) | (-) | 55 (1.6) | 7 (0.2) | - (-) | - (0.2) |
| 1998-99 | 3513 | - (-) | 16 (0.5) | - (-) | (-) | 76 (2.2) | - (-) | - (-) | - (0.2) |
| 1999-00 | 3017 | - (-) | 9 (0.3) | - (-) | - (-) | 103 (3.4) | - (-) | - (-) | - (0.1) |
| 2000-01 | 4089 | - (-) | 15 (0.4) | - (-) | - (-) | 84 (2) | - (-) | 1 (0) | 1 (0.2) |
| 2001-02 | 1991 | - (-) | 6 (0.3) | - (-) | - (-) | 44 (2.2) | - (-) | - (-) | - (0.1) |
| 2002-03 | 2416 | - (-) | 5 (0.2) | - (-) | - (-) | 104 (4.3) | - (-) | - (-) | - (0.1) |
| 2003-04 | 2482 | - (-) | 4 (0.2) | - (-) | - (-) | 39 (1.6) | - (-) | - (-) | - (0.2) |
| 2004-05 | 2176 | - (-) | 4 (0.2) | - (-) | (-) | 38 (1.8) | - (-) | 2 (0.1) | 2 (0.4) |
| 2005-06 | 1080 | - (-) | 2 (0.2) | - (-) | - (-) | 15 (1.4) | - (-) | - (-) | - (0.2) |
| 2006-07 | 2102 | - (-) | 10 (0.5) | - (-) | 2 (0.1) | 84 (4.0) | - (-) | 2 (0.1) | 2 (0.2) |
| 2007-08 | 3437 | 3 (0.1) | 8 (0.2) | 2 (0.1) | 1 (0) | 63 (1.8) | - (-) | 1 (0) | 1 (0.1) |
| 2008-09 | 2290 | - (-) | 3 (0.1) | 1 (0) | - (-) | 27 (1.2) | - (-) | - (-) | - (0.1) |
| 2009-10 | 3353 | - (-) | 4 (0.1) | 3 (0.1) | - (-) | 27 (0.8) | - (-) | - (-) | - (0.2) |
| 2010-11 | 1590 | 1 (0.1) | - (-) | - (-) | - (-) | 13 (0.8) | - (-) | 2 (0.1) | 2 (0.1) |
| 2011-12 | 1551 | 1 (0.1) | 4 (0.3) | 3 (0.2) | 1 (0.1) | 27 (1.7) | - (-) | 7 (0.4) | 7 (0.4) |
| 2012-13 | 956 | - (-) | 3 (0.3) | - (-) | - (-) | 6 (0.6) | - (-) | - (-) | - (0.2) |
| 2013-14 | 2537 | 6 (0.2) | 7 (0.3) | 3 (0.1) | 1 (0) | 24 (1) | - (-) | 6 (0.2) | 6 (0.6) |

(d) Puysegur (bottom and midwater trawls)

| Year | Catch in $\mathbf{t}$ (\% of hoki catch) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HOK | CSQ |  | HAK | LIN |  | RCO | SND | SPD | SWA | Other |
| 1990-91 | 986 | - (-) | 3 | (0.3) | 25 (2.5) | 2 | (0.2) | 2 (0.2) | 1 (0.1) | 1 (0.1) | 1 (1.4) |
| 1991-92 | 1028 | 1 (0.1) | 27 | (2.6) | 431 (41.9) | 16 | (1.6) | 4 (0.4) | 4 (0.4) | 2 (0.2) | 2 (5.3) |
| 1992-93 | 530 | 3 (0.6) | 3 | (0.6) | 80 (15.1) | 2 | (0.4) | 1 (0.2) | - (-) | 1 (0.2) |  |
| 1993-94 | 959 | - (-) |  | (-) | 8 (0.8) | 5 | (0.5) | - (-) | 6 (0.6) | 7 (0.7) | 7 (1) |
| 1994-95 | 226 | - (-) | - | (-) | 8 (3.5) | - | (-) | - (-) | - (-) | - (-) | - (0.4) |
| 1995-96 | 719 | - (-) | 2 | (0.3) | 33 (4.6) | 3 | (0.4) | - (-) | 2 (0.3) | 3 (0.4) | 3 (0.7) |
| 1996-97 | 455 | 1 (0.2) | - | (-) | 6 (1.3) | - | (-) | - (-) | 3 (0.7) | 3 (0.7) | 3 (2) |
| 1998-99 | 226 | - (-) | 4 | (1.8) | 25 (11.1) | 6 | (2.6) | 1 (0.4) | 9 (4) | 6 (2.6) | 6 (6.2) |
| 1999-00 | 370 | - (-) | - | (-) | 25 (6.8) | - | (-) | 2 (0.5) | 7 (1.9) | 17 (4.6) | 17 (4) |
| 2000-01 | 823 | - (-) | 6 | (0.7) | 30 (3.6) | 4 | (0.5) | 5 (0.6) | 16 (1.9) | 221 (26.9) | 221 (6.3) |
| 2001-02 | 561 | - (-) | - | (-) | 20 (3.6) |  | (0.2) | - (-) | 1 (0.2) | 34 (6.1) | 34 (1.2) |
| 2002-03 | 678 | 2 (0.3) | 2 | (0.3) | 52 (7.7) |  | (-) | 1 (0.2) | 2 (0.3) | 25 (3.7) | 25 (3.8) |
| 2003-04 | 549 | - (-) | - | (-) | 32 (5.8) |  | (0.2) | 2 (0.4) | 2 (0.4) | 14 (2.5) | 14 (3.1) |
| 2004-05 | 1237 | - (-) | 1 | (0.1) | 20 (1.6) |  | (0.1) | - (-) | 11 (0.9) | 1 (0.1) | 1 (1.4) |
| 2005-06 | 478 | 5 (1.1) | 3 | (0.6) | 105 (22) | 1 | (0.2) | 10 (2.1) | 1 (0.2) | 26 (5.4) | 26 (7.7) |
| 2006-07 | 10 | - (-) |  | (-) | 4 (40.0) |  | (-) | - (-) | - (-) | - (-) | -(20.0) |
| 2009-10 | 31 | - (-) | - | (-) | - (-) |  | (-) | - (-) | - (-) | 1 (3.2) | 1 (-) |
| 2010-11 | 1 | - (-) | - | (-) | - (-) |  | (-) | - (-) | - (-) | - (-) | - (-) |
| 2011-12 | 381 | 6 (1.6) | 6 | (1.6) | 19 (5) |  | (-) | 2 (0.5) | - (-) | 5 (1.3) | 5 (2.6) |
| 2012-13 | 444 | 13 (2.9) | 12 | (2.7) | 22 (5) |  | (-) | 12 (2.7) | 1 (0.2) | 30 (6.8) | 30 (7.7) |
| 2013-14 | 69 | 3 (4.3) | 1 | (1.4) | 6 (8.7) | - | (-) | 1 (1.4) | - (-) | (-) | - (5.8) |

Table 6: continued.
(e) Sub-Antarctic (bottom trawls)

|  |  |  |  |  |  |  |  |  |  | Catch in t (\% of hoki catch) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | HOK | HAK |  | JAV | LIN |  | RAT |  | SPD |  | SWA |  | WWA |  | Other |
| 1990-91 | 1974 | 204 (10.3) | 17 | (0.9) | 91 (4.6) | 14 | (0.7) | 3 | (0.2) | - | (-) | 3 | (0.2) |  | (10.9) |
| 1991-92 | 3452 | 332 (9.6) | 47 | (1.4) | 248 (7.2) | 39 | (1.1) | 15 | (0.4) | 9 | (0.3) | 35 | (1) |  | (5.9) |
| 1992-93 | 2566 | 509 (19.8) | 30 | (1.2) | 224 (8.7) | 21 | (0.8) | 8 | (0.3) | 5 | (0.2) | 22 | (0.9) |  | (4.4) |
| 1993-94 | 1118 | 31 (2.8) | 11 | (1) | 98 (8.8) | 10 | (0.9) | 12 | (1.1) | 11 | (1) | 5 | (0.4) |  | (5.5) |
| 1994-95 | 877 | 22 (2.5) | 14 | (1.6) | 57 (6.5) | 12 | (1.4) | 15 | (1.7) | - | (-) | 8 | (0.9) |  | (6.2) |
| 1995-96 | 742 | 27 (3.6) | 9 | (1.2) | 95 (12.8) | 15 | (2) | 5 | (0.7) | 8 | (1.1) | 22 | (3) |  | (6.7) |
| 1996-97 | 66 | 8 (12.1) | 4 | (6.1) | 3 (4.5) | 3 | (4.5) | - | (-) | - | (-) | - | (-) |  | (30.3) |
| 1997-98 | 1893 | 127 (6.7) | 66 | (3.5) | 190 (10) | 59 | (3.1) | 20 | (1.1) | 3 | (0.2) | 28 | (1.5) | 28 |  |
| 1998-99 | 4727 | 133 (2.8) | 74 | (1.6) | 256 (5.4) | 77 | (1.6) | 20 | (0.4) | 26 | (0.6) | 18 | (0.4) |  | (4.8) |
| 1999-00 | 5020 | 212 (4.2) | 186 | (3.7) | 336 (6.7) | 65 | (1.3) | 47 | (0.9) | 158 | (3.1) | 25 | (0.5) |  | (6.7) |
| 2000-01 | 2739 | 87 (3.2) | 76 | (2.8) | 369 (13.5) | 50 | (1.8) | 58 | (2.1) | 159 | (5.8) | 26 | (1) |  | (7.7) |
| 2001-02 | 3889 | 154 (4) | 308 | (7.9) | 193 (5) | 94 | (2.4) | 97 | (2.5) | 35 | (0.9) | 27 | (0.7) |  | (7.7) |
| 2002-03 | 2003 | 81 (4) | 99 | (4.9) | 363 (18.1) | 47 | (2.4) | 80 | (4) | 21 | (1.1) | 20 | (1.0) |  | (10.3) |
| 2003-04 | 548 | 37 (6.8) | 36 | (6.6) | 309 (56.4) | 16 | (2.9) | 171 | (31.2) | 54 | (9.8) | 13 | (2.4) |  | (15.7) |
| 2004-05 | 391 | 24 (6.1) |  | (18.2) | 189 (48.3) | 15 | (3.8) | 6 | (1.5) | 5 | (1.3) | 10 | (2.6) |  | (11.5) |
| 2005-06 | 1170 | 14 (1.2) | 29 | (2.5) | 118 (10.1) | 14 | (1.2) | 63 | (5.4) | 68 | (5.8) | 70 | (6) | 70 | (4) |
| 2006-07 | 1225 | 16 (1.3) | 50 | (4.1) | 225 (18.4) | 18 | (1.5) | 85 | (6.9) | 82 | (6.7) | 85 | (6.9) |  | (7.3) |
| 2007-08 | 2670 | 100 (3.8) | 176 | (6.6) | 1002 (37.5) | 28 | (1.1) | 30 | (1.1) | 9 | (0.3) | 76 | (2.8) |  | (10.8) |
| 2008-09 | 2890 | 93 (3.2) | 127 | (4.4) | 359 (12.4) | 40 | (1.4) | 83 | (2.9) | 52 | (1.8) | 39 | (1.4) | 39 | (6.6) |
| 2009-10 | 2905 | 64 (2.2) | 147 | (5.1) | 232 (8) | 85 | (2.9) | 68 | (2.3) | 26 | (0.9) | 30 | (1) | 30 | (7.2) |
| 2010-11 | 2014 | 34 (1.7) | 61 | (3) | 208 (10.3) | 58 | (2.9) | 105 | (5.2) | 58 | (2.9) | 56 | (2.8) |  | (8.3) |
| 2011-12 | 2141 | 46 (2.1) | 64 | (3) | 404 (18.9) | 48 | (2.2) | 46 | (2.1) | 1 | (0) | 30 | (1.4) | 30 | (5.4) |
| 2012-13 | 6059 | 58 (1) | 197 | (3.2) | 647 (10.7) | 129 | (2.1) | 132 | (2.2) | 226 | (3.7) | 39 | (0.6) |  | (4.7) |
| 2013-14 | 5327 | 81 (1.5) | 225 | (4.2) | 593 (11.1) | 149 | (2.8) | 240 | (4.5) | 58 | (1.1) | 74 | (1.4) |  | (7.3) |

(f) Chatham Rise and ECSI (excludes ECSI from June-September) (bottom trawl).


Table 6: continued.
(g) ECSI, June-September (bottom and midwater trawls).

| Year | Catch in t (\% of hoki catch) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HOK | BAR | HAK | JAV | LIN | RAT | SPD | SWA | Other |
| 2000-01 | 5 | - (-) | (-) | - (-) | - (-) | (-) | - (-) | - (-) | - (-) |
| 2001-02 | 97 | - (-) | (-) | - (-) | 1 (1) | 1 (1) | - (-) | (-) | - (1) |
| 2002-03 | 914 | 16 (1.8) | 22 (2.4) | 6 (0.7) | 8 (0.9) | 18 (2) | 5 (0.6) | 20 (2.2) | 20 (1.2) |
| 2003-04 | 939 | - (-) | 2 (0.2) | 4 (0.4) | 4 (0.4) | 6 (0.6) | 1 (0.1) | 1 (0.1) | 1 (0.8) |
| 2004-05 | 280 | (-) | (-) | 1 (0.4) | 1 (0.4) | 2 (0.7) | - (-) | (-) | - (0.4) |
| 2005-06 | 505 | - (-) | 5 (1) | 1 (0.2) | - (-) | 3 (0.6) | 1 (0.2) | 35 (6.9) | 35 (0.6) |
| 2007-08 | 72 | - (-) | 2 (2.8) | 2 (2.8) | 1 (1.4) | 9 (12.5) | - (-) | 2 (2.8) | 2 (6.9) |
| 2008-09 | 311 | - (-) | (-) | - (-) | - (-) | 1 (0.3) | - (-) | (-) | - (0.3) |
| 2009-10 | 41 | - (-) | (-) | 1 (2.4) | 1 (2.4) | 18 (43.9) | - (-) | - (-) | - (9.8) |
| 2010-11 | 413 | - (-) | 2 (0.5) | - (-) | 1 (0.2) | 4 (1) | - (-) | (-) | - (0.7) |
| 2011-12 | 355 | - (-) | 1 (0.3) | 2 (0.6) | 1 (0.3) | 15 (4.2) | - (-) | 10 (2.8) | 10 (1.4) |
| 2012-13 | 1451 | - (-) | 7 (0.5) | 3 (0.2) | 4 (0.3) | 17 (1.2) | 4 (0.3) | 99 (6.8) | 99 (0.2) |
| 2013-14 | 43 | - (-) | 3 (7) | 1 (2.3) | 1 (2.3) | 2 (4.7) | - (-) | - (-) | - (4.7) |

Table 7: Number of 2013-14 hoki length frequency samples and otoliths by observer trips, target species, and monthly timing. Length frequency samples with errors, missing data or outside the sample period (e.g. non-spawning in a spawning area) have been removed. Note: 10 length frequency samples were excluded as these were from large vessels inside the $\mathbf{2 5}$ n.mile line, which may have position errors.
(a) WCSI observer samples

| Trip | Month | Target species | Number of |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length samples | Otoliths |
| 1 | Jun | HAK/HOK | 16 | - |
| 2 | May/Jun | HAK | 11 | 20 |
| 3 | May/Jun | HOK | 23 | 41 |
| 4 | May/Jun | HOK | 22 | 48 |
| 5 | May/Jun | HOK | 14 | 32 |
| 6 | Jun/Jul | HOK | 49 | 65 |
| 7 | Jun | HAK/HOK | 34 | 20 |
| 8 | Jun | HAK/HOK | 26 | 50 |
| 9 | Jun/Jul | HOK | 21 | 36 |
| 10 | Jun/Jul | HAK/HOK | 13 | 19 |
| 11 | Jun/Jul | HOK | 10 | - |
| 12 | Jun/Jul | HAK/HOK | 12 | 15 |
| 13 | Jun/Jul/Aug | HOK | 40 | 72 |
| 14 | Jun/Jul | HOK | 36 | 66 |
| 15 | Jun/Jul | HOK | 26 | - |
| 16 | Jun/Jul | HAK/HOK | 12 | - |
| 17 | Jul | HOK | 6 | - |
| 18 | Jun/Jul | HOK | 21 | 43 |
| 19 | Jul/Aug | HOK | 8 | 23 |
| 20 | Jul/Aug | HOK | 32 | - |
| 21 | Jul | HOK | 19 | - |
| 22 | Jul/Aug | HAK/HOK | 23 | 12 |
| 23 | Aug | HOK | 7 | 22 |
| 24 | Jul | HOK | 11 | - |
| 25 | Jul | HAK/HOK | 8 | - |
| 26 | Jul | HAK/HOK | 20 | 55 |
| 27 | Jul/Aug | HOK | 17 | - |
| 28 | Jul/Aug | HOK | 23 | - |
| 29 | Jul/Aug | HOK | 38 | 100 |
| 30 | Jul/Aug | HOK | 63 | - |
| 31 | Jul/Aug | HOK | 25 | - |
| 32 | Jul/Aug | HOK | 19 | - |
| 33 | Aug/Sep | HAK/HOK | 15 | 3 |
| 34 | Aug/Sep | HOK | 16 | - |
| 35 | Jul/Aug | HOK | 19 | - |
| 36 | Aug/Sep | HAK/HOK | 18 | 3 |
| 37 | Aug | HAK/HOK | 17 | 4 |
| 38 | Aug | HAK/HOK | 9 | - |
| 39 | Aug | HOK | 7 | - |
| 40 | Aug/Sep | HAK/HOK | 37 | 5 |
| 41 | Sep | HAK/HOK | 7 | - |
| 42 | Sep | HAK/HOK | 14 | - |
| Total | - | - | 864 | 754 |
|  |  | HAK(108), $\mathrm{HOK}(755)$ | (822 outside, 42 inside) |  |

Table 7: continued.
(b) Cook Strait observer and market samples.

|  |  | Number of |  |  |
| :--- | :--- | :--- | ---: | ---: |
| Trip | Month | Target species | Length samples | Otoliths |
|  |  |  |  |  |
| 1 | Jun/Jul | HOK | 44 | 179 |
| 2 | Jul | HOK | 6 | - |
| 3 | Jul | HOK | 10 | - |
| 4 | Sep | HOK | 16 | - |
| Observer total | - | - | 76 | 179 |
|  |  |  |  |  |
| Market | Jun | HOK | 6 | 118 |
| Market | Jul | HOK | 9 | 144 |
| Market | Aug | HOK | 15 | 254 |
| Market | Sep | HOK | 3 | 53 |
| Market total | - | - | 33 | 569 |
|  |  |  | 109 | 748 |

Table 7: continued.
(c) Chatham Rise and ECSI observer data; Chatham Rise includes ECSI non-spawning data.

| Trip | Month | Target species | Number of length samples |  | Number of otoliths |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chatham Rise | ECSI spawning |  |
| 1 | Oct | JMA | 1 | - | - |
| 2 | Oct | HOK/SWA | 9 | - | 11 |
| 3 | Oct | HOK | 2 | - | 4 |
| 4 | Oct | SWA | 5 | - | - |
| 5 | Oct | RBT | 1 | - | - |
| 6 | Oct | HOK | 2 | - | - |
| 7 | Oct | BAR/JMA/RBT | 6 | - | - |
| 8 | Oct/Nov | SWA | 9 | - | 4 |
| 9 | Oct/Nov | HAK/HOK | 72 | - | 128 |
| 10 | Oct/Dec | HOK/SWA | 8 | - | 8 |
| 11 | Nov/Dec | HOK | 83 | - | 150 |
| 12 | Nov | HOK | 1 | - | 3 |
| 13 | Nov/Dec | HOK/SWA | 57 | - | 110 |
| 14 | Nov/Dec | HOK | 18 | - | 38 |
| 15 | Dec | HOK | 2 | - | 3 |
| 16 | Jan | HOK | 2 | - | 6 |
| 17 | Dec | SCI | 2 | - | - |
| 18 | Dec/Jan | HOK/SWA/WWA | 79 | - | 162 |
| 19 | Dec/Jan | HOK/SWA | 15 | - | 37 |
| 20 | Dec/Jan | HOK | 4 | - | 7 |
| 21 | Dec/Jan | HOK | 21 | - | 56 |
| 22 | Jan | HOK | 3 | - | 6 |
| 23 | Jan | BAR | 1 | - | - |
| 24 | Mar/Apr | SCI | 6 | - | - |
| 25 | Jan | HOK | 2 | - | 6 |
| 26 | Jan/Feb | HOK | 103 | - | 186 |
| 27 | Feb/Mar | HOK | 28 | - | 63 |
| 28 | Feb | BAR | 3 | - | - |
| 29 | Feb | BAR | 2 | - | - |
| 30 | Mar | JMA | 2 | - | - |
| 31 | Mar | BAR/JMA | 7 | - | - |
| 32 | Mar | BAR | 1 | - | - |
| 33 | Apr/May | HOK | 67 | - | 168 |
| 34 | May | HOK | 2 | - | 4 |
| 35 | Sep | HOK/SWA | 28 | 1 | 44 |
| 36 | Sep | SWA | 2 | - | 13 |
| Total | - | - | 656 | 1 | 1217 |

Table 7: continued.
(d) Sub-Antarctic observer data

| Trip | Month | Target species | Number of |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length samples | Otoliths |
| 1 | Oct | HOK/SBW | 4 | 17 |
| 2 | Oct | SWA | 1 | - |
| 3 | Oct | HAK/LIN/WWA | 18 | 60 |
| 4 | Nov | HOK/SWA | 5 | 9 |
| 5 | Nov/Dec | HOK/SWA | 6 | 21 |
| 6 | Nov | LIN/SWA/WWA | 10 | 35 |
| 7 | Nov | HOK/SWA | 5 | 20 |
| 8 | Nov | HAK/LIN/SQU/WWA | 12 | 21 |
| 9 | Nov | HOK | 3 | 9 |
| 10 | Nov/Dec | HOK | 12 | 67 |
| 11 | Nov/Dec | SWA | 6 | 17 |
| 12 | Nov/Dec/Jan | LIN/SWA/WWA | 26 | 57 |
| 13 | Dec | HOK/SWA | 9 | 30 |
| 14 | Dec | SQU/WWA | 3 | 8 |
| 15 | Dec/Jan | HOK/LIN/SQU/SWA | 18 | 70 |
| 16 | Dec/Jan | HAK/SQU/WWA | 20 | 37 |
| 17 | Jan | SQU | 1 | - |
| 18 | Dec/Jan | HOK/SQU/SWA | 12 | 36 |
| 19 | Dec/Jan | HOK/SQU/SWA | 16 | 44 |
| 20 | Jan/Feb | HAK/HOK/LIN/SWA | 9 | 31 |
| 21 | Jan | SQU | 5 | - |
| 22 | Feb | HOK/SQU | 6 | 12 |
| 23 | Jan | HOK/SQU | 2 | 6 |
| 24 | Jan | SQU | 2 | - |
| 25 | Jan | SQU | 1 | - |
| 26 | Jan | WWA | 3 | 9 |
| 27 | Feb | SQU | 1 | 7 |
| 28 | Feb | HOK/SQU | 3 | 4 |
| 29 | Feb | HOK/LIN/SQU/SWA | 5 | 28 |
| 30 | Feb | HOK/SQU/SWA | 4 | - |
| 31 | Feb | HOK/WWA | 7 | 37 |
| 32 | Feb/Mar | SQU/SWA | 5 | 10 |
| 33 | Feb | SQU | 1 | 5 |
| 34 | Mar | SQU | 1 | - |
| 35 | Mar | SQU | 2 | 1 |
| 36 | Mar | JMA/SQU | 3 | - |
| 37 | Apr | SQU | 1 | - |
| 38 | Mar/Apr | SQU | 2 | 9 |
| 39 | Mar | SQU | 3 | 10 |
| 40 | Apr | SQU | 1 | 4 |
| 41 | Apr | SQU | 1 | - |
| 42 | Apr | SQU | 1 | 1 |
| 43 | Mar/Apr | SQU | 3 | 1 |
| 44 | Apr | WAR | 1 | - |
| 45 | Apr | SQU/SWA | 4 | 13 |
| 46 | Apr/May | HOK | 53 | 285 |
| 47 | Apr | OEO | 1 | 1 |
| 48 | Apr | SQU | 1 | 1 |
| 49 | Apr | SQU | 3 | - |
| 50 | Apr | SQU | 2 | - |
| 51 | Apr/May/Jun | HOK | 34 | - |
| 52 | May | SQU/WWA | 2 | 2 |
| 53 | May | SQU | 1 | - |
| 54 | May | SQU | 1 | - |
| 55 | May/Jun | HOK | 13 | 50 |
| 56 | May/Jun | HOK/SQU | 4 | 4 |
| 57 | May/Jun | HOK | 28 | 97 |
| 58 | Jun | SQU | 1 | 5 |
| 59 | Jun | SQU | 1 | 1 |
| 60 | Sep | SBW | 9 | - |
| 61 | Aug/Sep | SBW | 13 | - |
| 62 | Sep | SBW | 4 | - |
| 63 | Sep | SBW | 1 | - |
| 64 | Sep | SBW | 4 | - |
| 65 | Sep | LIN | 1 | - |
| 66 | Sep | SBW | 9 | - |
| 67 | Sep | SBW | 6 | - |
| 68 | Sep | HOK/SWA | 2 | 2 |
| Total | - | - | 458 | 1194 |

Table 8: Stratification for the 2014 WCSI and Cook Strait length samples.
(a) Number of WCSI hoki length frequency samples and catch by week from inside and outside the $\mathbf{2 5} \mathbf{n}$. mile line.

| Week | Date | Number of length samples |  | Catch (t) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Inside | Outside | Inside | Outside |
| 19 | 7-13 May | 2 | - | 139.5 | 1.0 |
| 20 | 14-18 May | 5 | - | 383.1 | 25.9 |
| 21 | 21-27 May | 3 | - | 417.9 | 1.5 |
| 22 | 28 May-3 Jun | 6 | 16 | 467.3 | 428.9 |
| 23 | 4-10 Jun | 5 | 20 | 611.0 | 362.5 |
| 24 | 11-17 Jun | 2 | 44 | 775.5 | 1405.6 |
| 25 | 18-24 Jun | - | 40 | 671.1 | 954.8 |
| 26 | 25 Jun-1 Jul | - | 68 | 828.5 | 2852.1 |
| 27 | 2-8 Jul | 4 | 67 | 1090.5 | 4409.9 |
| 28 | 9-15 Jul | 5 | 74 | 704.3 | 5775.4 |
| 29 | 16-22 Jul | 2 | 84 | 980.7 | 7005.7 |
| 30 | 23-29 Jul | 4 | 90 | 977.9 | 5804.5 |
| 31 | 30 Jul-5 Aug | 4 | 84 | 567.8 | 7906.0 |
| 32 | 6-12 Aug | - | 65 | 804.6 | 8193.6 |
| 33 | 13-19 Aug | - | 54 | 466.3 | 5716.2 |
| 34 | 20-26 Aug | - | 35 | 234.1 | 3962.3 |
| 35 | 27 Aug-2 Sep | - | 19 | 191.8 | 2600.3 |
| 36 | 3-9 Sep | - | 24 | 32.4 | 1169.2 |
| 37 | 10-16 Sep | - | 22 | 20.4 | 337.8 |
| 38 | 17-23 Sep | - | 12 | 0.0 | 70.5 |
| 39 | 24-30 Sep | - | 4 | 0.1 | 24.6 |

## (b) Stratification of WCSI hoki fishery length frequency data.

| Stratum | Length samples |  | Catch |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Description | Number | Description | Catch (t) |
| 1 | 12-27 May; Inside line | 10 | 3-27 May; Inside line | 941.0 |
| 2 | 28 May - 14 Jun; Inside line | 13 | 28 May-24 Jun; Inside line | 2524.8 |
| 3 | $5-15 \mathrm{Jul}$; Inside line | 9 | 25 Jun - 15 Jul; Inside line | 2623.2 |
| 4 | $16 \mathrm{Jul}-2 \mathrm{Aug}$; Inside line | 10 | 16 Jul - 5 Aug; Inside line | 2526.4 |
| 5 | 28 May - 3 Jun; Outside line | 16 | 1 May - 3 Jun; Outside line | 457.9 |
| 6 | 4-10 Jun; Outside line | 20 | $4-10$ Jun; Outside line | 362.5 |
| 7 | 11-17 Jun; Outside line | 44 | 11-17 Jun; Outside line | 1405.6 |
| 8 | 18-24 Jun; Outside line | 40 | 18-24 Jun; Outside line | 954.8 |
| 9 | 25 Jun - 1 Jul; Outside line | 68 | 25 Jun - 1 Jul; Outside line | 2852.1 |
| 10 | $2-8 \mathrm{Jul}$; Outside line | 66 | $2-8 \mathrm{Jul}$; Outside line | 4409.9 |
| 11 | $9-15 \mathrm{Jul}$; Outside line | 74 | 9-15 Jul; Outside line | 5775.4 |
| 12 | 16-22 Jul; Outside line | 84 | 16-22 Jul; Outside line | 7005.7 |
| 13 | 23-29 Jul; Outside line | 90 | 23-29 Jul; Outside line | 5804.5 |
| 14 | 30 Jul-5 Aug; Outside line | 84 | 30 Jul-5 Aug; Outside line | 7906.0 |
| 15 | 6-12 Aug; Outside line | 65 | 6-12 Aug | 8998.2 |
| 16 | 13-19 Aug; Outside line | 54 | 13-19 Aug | 6182.5 |
| 17 | 20-26 Aug; Outside line | 35 | 20-26 Aug | 4196.4 |
| 18 | 27 Aug-2 Sep; Outside line | 18 | 27 Aug-2 Sep | 2792.1 |
| 19 | 3-9 Sep; Outside line | 24 | 3-9 Sep | 1201.5 |
| 20 | 10-16 Sep; Outside line | 22 | 10-16 Sep | 358.1 |
| 21 | 17-26 Sep; Outside line | 15 | 17-30 Sep | 95.2 |

Table 8: continued.
(c) Cook Strait 2014 hoki length frequency data and catch by month and vessel size

| Data set | Stratum | Month |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Jun | Jul | Aug | Sep |  |
| Catches (t) | Nelson/Picton vessel $<30 \mathrm{~m}$ | 69 | 1342 | 2305 | 247 | 3963 |
|  | Nelson/Picton vessel $30-40 \mathrm{~m}$ | 425 | 569 | 693 | 279 | 1966 |
|  | Nelson/Picton vessel $>40 \mathrm{~m}$ | 1208 | 1397 | 2612 | 2573 | 7790 |
|  | Wellington | 58 | 234 | 400 | 183 | 875 |
| Observer samples | Nelson/Picton vessel $<30 \mathrm{~m}$ | - | 6 | - | - | 6 |
|  | Nelson/Picton vessel $>40 \mathrm{~m}$ | 35 | 19 | - | 16 | 70 |
| Market samples | Nelson/Picton vessel $<30 \mathrm{~m}$ | 2 | 7 | 11 | - | 20 |
|  | Nelson/Picton vessel $>40 \mathrm{~m}$ | 4 | 2 | 4 | 3 | 13 |

(d) Cook Strait 2014 stratification

|  |  | Stratum |  |  | Number of samples |  |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| Stratum | Vessel size | Date range | Catch $(\mathrm{t})$ |  | Market | Observer |
| 1 | $<40 \mathrm{~m}$ | Jun-Jul | 2697 |  | 9 | 6 |
| 2 | $<40 \mathrm{~m}$ | Aug-Sep | 4108 |  | 11 | - |
| 3 | $\geq 40 \mathrm{~m}$ | Jun | 1208 |  | 4 | 35 |
| 4 | $\geq 40 \mathrm{~m}$ | Jul | 1397 |  | 2 | 19 |
| 5 | $\geq 40 \mathrm{~m}$ | Aug | 2612 |  | 4 | - |
| 6 | $\geq 40 \mathrm{~m}$ | Sep | 2573 |  | 3 | 16 |

Table 9: Percentage of female hoki by observer stages on the WCSI for female fish less than or equal to $55 \mathrm{~cm}(\mathrm{n}=1798)$ and female fish greater than $55 \mathrm{~cm}(\mathrm{n}=44045)$ for the 2014 spawning season.

|  |  | Females $\leq 55 \mathrm{~cm}$ |  |  | Females $>55 \mathrm{~cm}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Number | Percent |  | Number | Percent |  |
| 1 | Immature and resting | 580 | 32.3 |  | 2479 | 5.6 |
| 2 | Ripening | 613 | 34.1 |  | 15234 | 34.6 |
| 2 | Ripe | 458 | 25.5 |  | 15671 | 35.6 |
| 3 | Running ripe | 97 | 5.4 |  | 6754 | 15.3 |
| 4 | Spent | 50 | 2.8 |  | 3907 | 8.9 |

Table 10: Strata for the 2013-14 non spawning fisheries based on the tree regression of all data (Observer Programme only), with comparison of the TCEPR, Observer Programme (OP), and otolith data by stratum. The catch for OP is the total catch for the observed tows.
(a) Chatham Rise

| Stratum | Splitting variables |  |  | Mean length (cm) | Hoki catch (t) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth of net | Longitude | Dates |  | TCEPR | OP |
| 1 | < 597.75 | $<177.9^{\circ}$ |  | 65.9 | 18868 | 2401 |
| 2 | 597.75 | $\geq 177.9^{\circ}$ | $2 \mathrm{Jan}-30 \mathrm{Sep}$ | 68.8 | 6565 | 873 |
| 3 | < 597.75 | $\geq 177.9^{\circ}$ | 1 Oct - 1 Jan | 74.4 | 2680 | 628 |
| 4 | 597.75-656.5 |  |  | 76.2 | 2520 | 416 |
| 5 | $\geq 656.5$ |  |  | 82.9 | 3107 | 429 |


| No. of tows <br> sampled |  |  | No. of <br> otoliths | No. of fish <br> Measured |
| ---: | ---: | ---: | ---: | ---: |
| TCEPR | OP |  |  |  |
| 3173 | 360 | 415 | 33564 |  |
| 884 | 88 | 156 | 8721 |  |
| 557 | 95 | 153 | 9628 |  |
| 336 | 57 | 95 | 5683 |  |
| 841 | 56 | 108 | 5645 |  |

(b) Sub-Antarctic

| Stratum | Splitting variables |  | Mean length (cm) | Hoki catch (t) |  | No. of tows sampled |  | No. of otoliths | No. of fish Measured |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth of net | Latitude |  | TCEPR | OP | TCEPR | OP |  |  |
| 1A | < 400 | $\leq 48.99$ | 59.0 | 862 | 481 | 334 | 104 | 80 | 4007 |
| 1B | 400-483.5 | $\leq 48.99$ | 59.6 | 1064 | 333 | 187 | 43 | 60 | 2989 |
| 2 | 483.5-625 | $\leq 48.99$ | 66.0 | 3656 | 703 | 586 | 94 | 213 | 7273 |
| 3 | < 625 | > 48.99 | 75.7 | 4689 | 390 | 1144 | 124 | 140 | 4214 |
| 4 | $\geq 625$ |  | 84.2 | 9649 | 850 | 1112 | 90 | 269 | 7492 |

Table 11: Relative biomass estimates ( $t$ in thousands) of hoki in $\mathbf{3 0 0} \mathbf{- 8 0 0} \mathbf{m}$ depths from Sub-Antarctic spring, autumn and summer Tangaroa trawl surveys. (3++ all hoki aged 3 years and older.) The CV is the coefficient of variation as \% (in parentheses).

| Survey | 1+ hoki |  |  |  | 2+ hoki |  | $3++$ hoki |  | Total hoki |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1+\text { year } \\ \text { class } \end{array}$ | t | CV | $\begin{array}{r} 2+\text { year } \\ \text { class } \end{array}$ | t | CV | t | CV | t | CV |
| Dec 91 | 1990 | 0.7 | (87) | 1989 | 0.2 | (56) | 79.4 | (7) | 80.3 | (7) |
| May 92 | 1990 | 0.8 | (39) | 1989 | 1.4 | (13) | 65.6 | (9) | 67.8 | (8) |
| Sep 92 | 1991 | 0.1 | (94) | 1990 | 0.01 | (58) | 34.1 | (14) | 34.3 | (14) |
| Dec 92 | 1991 | 0.2 | (66) | 1990 | 0.2 | (90) | 86.9 | (6) | 87.4 | (6) |
| May 93 | 1991 | 1.8 | (76) | 1990 | 0.2 | (33) | 51.4 | (10) | 53.5 | (11) |
| Dec 93 | 1992 | 1.1 | (98) | 1991 | 3.7 | (49) | 94.9 | (9) | 99.7 | (9) |
| Apr 96 | 1994 | 1.7 | (58) | 1993 | 3.2 | (41) | 85.4 | (9) | 90.4 | (10) |
| Apr 98 | 1996 | 0.2 | (62) | 1995 | 0.6 | (27) | 67.1 | (11) | 67.8 | (11) |
| Dec 00 | 1999 | 0.1 | (99) | 1998 | 0.03 | (51) | 55.6 | (13) | 55.7 | (13) |
| Dec 01 | 2000 | 0.2 | (49) | 1999 | 0.1 | (46) | 37.8 | (16) | 38.2 | (16) |
| Dec 02 | 2001 | 0.01 | (53) | 2000 | 2.5 | (51) | 37.4 | (14) | 39.9 | (14) |
| Dec 03 | 2002 | 1.8 | (28) | 2001 | 0.1 | (26) | 12.4 | (14) | 14.3 | (13) |
| Dec 04 | 2003 | 1.1 | (58) | 2002 | 3.3 | (57) | 13.2 | (9.4) | 17.6 | (12) |
| Dec 05 | 2004 | 0.4 | (50) | 2003 | 1.6 | (25) | 18.5 | (14) | 20.4 | (13) |
| Dec 06 | 2005 | 0.5 | (48) | 2004 | 0.7 | (25) | 13.1 | (11) | 14.3 | (11) |
| Dec 07 | 2006 | 1.0 | (54) | 2005 | 1.9 | (42) | 43.0 | (17) | 45.9 | (16) |
| Dec 08 | 2007 | 1.0 | (48) | 2006 | 1.6 | (37) | 44.4 | (15) | 47.0 | (14) |
| Dec 09 | 2008 | 0.5 | (54) | 2007 | 11.1 | (64) | 53.4 | (12) | 65.0 | (16) |
| Dec 11 | 2010 | 0.01 | (100) | 2009 | 2.3 | (21) | 43.8 | (15) | 46.1 | (15) |
| Dec 12 | 2011 | 0.90 | (44) | 2010 | 0.2 | (60) | 54.6 | (15) | 55.7 | (15) |
| Dec 14 | 2013 | 0.25 | (67) | 2012 | 1.7 | (48) | 29.0 | (13) | 31.3 | (13) |

FIGURES


Figure 1: Total New Zealand hoki catch estimated from reported landings for calendar years 1972 to 1983 and fishing years 1983-84 (1984) to 2013-14.


Figure 2a: Estimated total catch ( $t$ ) of hoki by 'stock' area (upper panel) and fishing area (lower panel) from 1988-89 (1989) to 2013-14 (2014). "Eastern" areas include Chatham Rise, east coast South Island (ECSI), Cook Strait, and east coast North Island (ECNI). "Western" areas include west coast South Island (WCSI), Sub-Antarctic, and Puysegur.


Figure 2b: Total catches and catches by form type by hoki area and fishing year. All areas (except Cook Strait) also show TCEPR data split by MW (midwater trawl) and BT (Bottom trawl). Sub-Antarctic and Puysegur have very little CELR or TCER data. There are no TCER or CELR catches for Sub-Antarctic.


Figure 3: Hoki catch by target species and area for the 1989-90 to 2013-14 fishing years. Hoki catches by target species include HOK, hoki; HAK, hake; LIN, ling; SWA, silver warehou; SQU, arrow squid; SPE, sea perch; WWA, white warehou; and SCI, scampi.


Figure 4a: Hoki catch by month and area for the 2013-14 fishing year (maximum circle size is $\mathbf{3 0} 000$ t).


Figure 4b: Daily distribution of hoki catch by area (in 5-day bins) by main area for 2009-10 to 2013-14 fishing years.


Figure 5: Distribution of hoki catch by month and area for the 1989-90 to 2013-14 fishing years.


Figure 5 ctd.


Figure 6a: Model catch, and unstandardised geometric and standardised CPUE indices for core data hoki tows from the WCSI for 1990-2014.


Figure 6a ctd. Model catch, and unstandardised geometric and standardised CPUE indices for core data hoki tows from Cook Strait for 1990-2014. Cook Strait included only midwater tows.


Figure 6a ctd. Model catch, and unstandardised geometric and standardised CPUE indices for core data hoki tows from the Chatham Rise for 1990-2014. Dataset for Chatham Rise included only bottom tows.


Figure 6a ctd. Model catch, and unstandardised geometric and standardised CPUE indices for core data hoki tows from the Sub-Antarctic for 1990-2014. Datasets for Sub-Antarctic included only bottom tows.


Figure 6b: Comparison of relative standardised CPUE indices from model runs for each area.


Figure 6b: ctd.




Figure 6b: ctd.

WCSI BT，max．$=60 \%$

| $2014-8$ | － | － | $\bigcirc$ | － | － | － | － | － | 0 | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2013-\bigcirc$ | － | － | $\bigcirc$ | － | － | － | 0 | － | $\bigcirc$ | 0 |
| 2012－0 | － | － | 0 | － | ． | ． | 0 | － | － | 0 |
| 2011 － 0 | － | － | $\bigcirc$ | － | － | － | 0 | － | 0 | $\bigcirc$ |
| 2010 － | － | － | 0 | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ |
| 2009 － | 0 | － | $\bigcirc$ | － | － | － | $\bigcirc$ | ． | － | $\bigcirc$ |
| 2008 | － | － | 0 | － | ． | ． | $\bigcirc$ | － | 0 | 0 |
| 2007 － 0 | － | － | 0 | － | － | － | － | － | 0 | 0 |
| $2006-0$ | $\bigcirc$ | － | $\bigcirc$ | － | － | 0 | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ |
| $2005-8$ | － | － | 8 | － | － | 0 | － | － | $\bigcirc$ | $\bigcirc$ |
| 2004 － | － | － | $\bigcirc$ | － | － | 0 | － | $\bigcirc$ | $\bigcirc$ | O |
| $2003-0$ | － | － | 0 | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ |
| $2002-\bigcirc$ | － | － | $\bigcirc$ | － | － | － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ |
| 2001 －0 | － | － | $\bigcirc$ | － | － | － | － | － | 0 | $\bigcirc$ |
| $2000-\bigcirc$ | － | － | 0 | $\bigcirc$ | － | － | － | － | 0 | $\bigcirc$ |
| 1999 － | － | － | $\bigcirc$ | － | － | ． | 0 | － | 0 | $\bigcirc$ |
| 1998 | － | － | $\bigcirc$ | － |  | － | $\bigcirc$ | － | $\bigcirc$ | 9 |
| 1997 | － | $\bigcirc$ |  | $\bigcirc$ |  | － | $\cdot$ |  | － |  |
| $1996-\bigcirc$ | ． | － | 8 | － |  | － | O | － | $\bigcirc$ |  |
| $1995-$ | － | 0 |  | $\bigcirc$ | 0 | － | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 1994 － 0 | － | － | 0 | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ |
| $1993-0$ | － | － | $\bigcirc$ | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ |
| 1992 － | － | － | $\bigcirc$ | － | － | － | － | 0 | $\bigcirc$ | $\bigcirc$ |
| 1991 －o | － | － | $\bigcirc$ | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| $\underset{~ Y ~}{\text { Y }}$ | $\underset{\text { ¢ }}{\gtrless}$ | 응 | $\underset{\sim}{z}$ | $\stackrel{\leftarrow}{\boxed{~}}$ | $\frac{\varrho}{\boxed{\nwarrow}}$ | $\frac{\bar{y}}{\infty}$ | $\frac{0}{0}$ | $\begin{aligned} & \text { D } \\ & \text { 心 } \\ & \text { 心 } \end{aligned}$ | $\underset{\infty}{ふ}$ | $\begin{aligned} & \frac{1}{\Phi} \\ & \stackrel{+}{\square} \end{aligned}$ |



WCSI MW，max．$=10 \%$

| 2014 | $\bigcirc$ |  |  | O |  | － | $\bigcirc$ | － | $\bigcirc$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 － | 0 | － | － | $\bigcirc$ | － | － | $\bigcirc$ | － | 0 |
| 2012 － | － 0 | － | ． | $\bigcirc$ | － | ． | 0 | － | － |
| 2011 －－ | － | － | ． | $\bigcirc$ | － | － | － | － | $\bigcirc$ |
| 2010 | $\bigcirc$ | － | ． | － | － | ． | － | － | $\bigcirc$ |
| 2009 | 80 | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ |
| 2008 | 8 | － | － | $\bigcirc$ | － | ． | $\bigcirc$ | － | $\bigcirc$ |
| 2007 － | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ | － | ． | － | $\bigcirc$ | $\bigcirc$ |
| 2006 |  | － |  | 8 | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 2005 |  | $\bigcirc$ | $\bigcirc$ |  | － | － | － | $\bigcirc$ |  |
| $2004-0$ |  | － | $\bigcirc$ |  | － | $\bigcirc$ | － | $\bigcirc$ |  |
| $2003-0$ |  | － |  |  | － | － | － | $\bigcirc$ | 0 |
| 2002 － 0 |  | $\bigcirc$ |  | 8 | － | － | $\bigcirc$ | $\bigcirc$ |  |
| 2001 －0 |  | － |  | $\bigcirc$ | － | － | $\bigcirc$ | 8 | $\bigcirc$ |
| 2000 | O |  | － | $\bigcirc$ |  | － | $\bigcirc$ |  | $\bigcirc$ |
| 1999 － | $\bigcirc$ | － | － | $\bigcirc$ | ． | － | $\bigcirc$ | 0 | $\bigcirc$ |
| 1998 － | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ |  | $\bigcirc$ |
| 1997 － | $\bigcirc$ | ． | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ |  | $\bigcirc$ |
| 1996 － 0 | $\bigcirc$ | ． | $\bigcirc$ | $\bigcirc$ | － | － | $\bigcirc$ |  | 0 |
| 1995 － | － | － | O | $\bigcirc$ | － | ． | $\bigcirc$ |  | － |
| 1994 － | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － |
| $1993-0$ | $\bigcirc \bigcirc$ | ． | － | － | － | － | － | $\bigcirc$ | $\bigcirc$ |
| 1992 － 0 | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | ． | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 1991 | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | ． | － | － | $\bigcirc$ | $\bigcirc$ |
| T |  |  |  | ， |  |  | ， | 1 | ， |
| $\underset{\sim}{\underset{\sim}{\alpha}}$ | $$ | $\underset{ঙ}{\gtrless}$ | $\sum_{j}^{\$}$ | $\underset{J}{\geqq}$ | $\begin{aligned} & \stackrel{\leftarrow}{\mathrm{m}} \\ & \underset{\sim}{n} \end{aligned}$ | $\frac{\bar{y}}{\infty}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\sum_{\infty}^{k}$ | $\begin{aligned} & \stackrel{\bullet}{\Phi} \\ & \stackrel{5}{0} \end{aligned}$ |

ECSI，max．$=50 \%$（Actual 5000\％）


Figure 7：Bycatch rates on vessels with Observer Programme observers in the hoki fishery for tows targeting hoki from 1990－91 to 2013－14．The WCSI（bottom and midwater trawls），Cook Strait，and ECSI data cover the spawning season（June－September）only．No observer data for Cook Strait 1994－95 and 1996－97，Puysegur 1997－98 to 2008－09，and ECSI 2006－07．Bycatch rates not calculated where observed hoki catch is less than 100 t ．Species chosen are the top eight by observed catch in an area．Species include： BAR，barracouta；CSQ，leafscale gulper shark；FRO，frostfish；GSP，pale ghost shark；HAK，hake；HOK， hoki；JAV，javelinfish；JMA，jack mackerels；LIN，ling；RAT，rattails；RCO，red cod；SPD，spiny dogfish； SPO，rig；SQU，arrow squid；SWA，silver warehou；and WWA，white warehou．


Figure 7: ctd


Figure 8: Density plots of all commercial TCEPR and TCER trawls where hoki was caught in the 201314 fishing year. TCEPR plot also shows observed positions as black dots.


Figure 9: Length frequency distributions of hoki in commercial catches from the west coast South Island spawning fishery from 1989 to 1993 sampled at sea by the Observer Programme. n, number of tows sampled; no., number of fish sampled. Numbers above the histograms mark estimated year-class modes, e.g., $91=1991$ year-class.


Figure 9 ctd. Length frequency distributions of hoki in commercial catches from the west coast South Island spawning fishery from 1994 to 2001 sampled at sea by the Observer Programme. n, number of tows sampled; no., number of fish sampled. Numbers above the histograms mark estimated year-class modes, e.g., $91=1991$ year-class.


Figure 9 ctd. Length frequency distributions of hoki in commercial catches from the west coast South Island spawning fishery from 2002 to 2009. In 2003-05 and 2007-09, Observer Programme data are combined with samples of landings from inside the 25 n . mile line sampled by NIWA. n, number of tows sampled; no., number of fish sampled; N, number of landings sampled. Numbers above the histograms mark estimated year-class modes, e.g., $2004=2004$ year-class.


Figure 9 ctd. Length frequency distributions of hoki in commercial catches from the west coast South Island spawning fishery from 2010 to 2014. In 2010, Observer Programme data are combined with samples of landings from inside the 25 n . mile line sampled by NIWA, in 2011-2012 there is only Observer data outside the 25 n . mile line, and in 2013 and 2014 there are Observer data inside the 25 n . mile line in MayJune, and Observer data outside the 25 n . mile line in June-September. n, number of tows sampled; no., number of fish sampled; $N$, number of landings sampled. Numbers above the histograms mark estimated year-class modes, e.g., $2007=2007$ year-class.

Females

$\mathrm{n}=250$



$$
\begin{aligned}
& 0 \xrightarrow{\square} \\
& 15 \square
\end{aligned}
$$

$$
\left.\begin{array}{l}
15 \\
10 \\
5
\end{array}\right]
$$

Numbers of fish (millions)

$$
\begin{gathered}
5 \\
0 \\
15 \square \substack{1991 \\
1 \\
n=389}
\end{gathered}
$$

$$
\vec{r}
$$

$$
\mathrm{n}=389
$$









Figure 10: Catch at age of hoki in commercial catches from the west coast South Island spawning fishery from 1988 to 2014. n, number of fish aged. Black bars for the years 1990 to 2000 show 1987 and 1988 yearclasses, grey bars show 1991-94 year-classes, and light grey bars in the 2004-2012 seasons represent the 2002 and 2003 year-classes.


Figure 10 ctd.

Females
Males


Figure 10 ctd.


Figure 11a: Percentage of males in the catch, percentage of all fish aged 7 and older in the catch, and percentage of male fish (of those that are over seven and older) in the catch, by area and fishing year.


Figure 11b: Percentage of small fish in the catch by area and fishing year.
(a) May-June 2014

Males


Females



Total


(b) July 2014

## Males



Females


Total


Figure 12: Comparison of length frequency distributions from inside and outside the $\mathbf{2 5} \mathbf{n}$. mile line from fish sampled at sea by the Observer Programme in (a) May-June, and (b) July 2014. n, number of landings or tows sampled; no., number of fish sampled.


Figure 13: Mean length of female (black) and male (blue) hoki taken in commercial catches from the west coast South Island spawning fishery 1987-2000 sampled at sea by the Observer Programme. Lines are a loess fit.


Figure 13 ctd.


Figure 14: Mean length at age of female and male hoki taken in commercial catches from the west coast South Island spawning fishery 1988-2014 sampled at sea by the Observer Programme. Lines are a loess fit. Points with fewer than ten records are excluded.


Figure 15: Comparison of WCSI 2013-14 Observer Programme catch coverage with TCEPR catches by day of year, depth, latitude, longitude, and vessel length. If sampling is representative of the fishery, then blue lines (observed catches) should overlay the black lines (TCEPR catch).


Figure 16: Length frequency distributions of hoki in commercial catches from the Cook Strait spawning fishery from 1991 to 2014 sampled in sheds by the Stock Monitoring Programme and NIWA, and at sea by the Observer Programme. n, number of landings sampled; no., number of fish sampled. Numbers above the histograms mark year-class modes, e.g., $91=1991$ year-class.


Figure 16 ctd.: 2006 data excludes Nelson vessels at least 40 m which sorted their catch at sea. 2007 and 2008 data includes shed samples (vessels less than 40 m ) and observer samples (vessels at least $\mathbf{4 0} \mathbf{~ m}$ ). n, number of landings sampled; $N$, number of observed tows; no., number of fish sampled. Numbers above the histograms mark year-class modes, e.g., $97=1997$ year-class and $2000=2000$ year-class.


Figure 16 ctd.: 2009 data includes shed samples (vessels less than 40 m ) and observer samples (vessels at least $\mathbf{4 0} \mathbf{~ m}$ ), 2010 data includes shed samples (vessels less than $\mathbf{4 0} \mathbf{~ m}$ ) and shed and observer samples (vessels at least $\mathbf{4 0} \mathbf{~ m}$ ), 2011-2013 data comprise only observer samples, and 2014 data includes observer and shed samples (vessels less than 40 m ) and shed samples (vessels at least $\mathbf{4 0} \mathbf{~ m}$ ). n, number of landings sampled; N, number of observed tows; no., number of fish sampled. Numbers above the histograms mark year-class modes, e.g., $2007=2007$ year-class.


Figure 17: Catch at age of hoki in commercial catches from the Cook Strait spawning fishery from 1988 to 2014 sampled in sheds by the Stock Monitoring Programme and NIWA, and at sea by observers. 2006 data excludes Nelson shed samples from vessels at least 40 m which sorted their catch at sea. 2007-2009 data includes shed samples (vessels less than $\mathbf{4 0} \mathbf{~ m}$ ) and tows sampled at sea by the Observer Programme (vessels at least $\mathbf{4 0} \mathbf{~ m}$ ), 2010 data includes shed samples (vessels less than $\mathbf{4 0} \mathbf{~ m}$ ) and shed and observer samples (vessels at least $\mathbf{4 0} \mathbf{~ m}$ ), and 2011-2013 data includes observer samples only from vessels longer and shorter than 40 m . n, number of fish aged. Black bars show 1987 and 1988 year-classes in the 1990-2003 seasons; dark grey bars show 1991-94 year-classes, light grey bars show the 2000 year-class, and black bars show the 2002-2003 year-classes from the 2005 season.


Figure 17 ctd.


Figure 17 ctd.


Figure 18: Comparison of Cook Strait 2013-14 Observer Programme catch coverage for TCEPR and TCER catches by day of year, depth, latitude, longitude, and vessel length. If sampling is representative of the fishery, then blue lines (sampled catches) should overlay black lines (catches).


Figure 19: Cook Strait 2013-14 catch by day for vessels less than 40 m and 40 m or longer during the spawning season, showing timing of Observer Programme samples (black dots), and shed samples (hollow dots).


Figure 20: Comparison of Observer Programme and shed sampling length frequency distributions of hoki taken in commercial catches from Cook Strait during 2014. n, number of tows sampled; no., number of fish sampled.


Figure 21: Mean length of female (black) and male (blue) hoki taken in commercial catches from the Cook Strait spawning fishery 1989-2014 from landings sampled by the Observer Programme. Lines are a loess fit.


Figure 21 ctd.

CSTR females


Figure 22: Mean length at age of female and male hoki taken in commercial catches from the Cook Strait spawning fishery 1988-2014 sampled at sea by the Observer Programme and NIWA shed sampling Programme. Lines are a loess fit. Points with fewer than ten records are excluded.


Figure 23: Length frequency distributions of hoki in commercial catches from the Puysegur spawning fishery from 1989 to 1997, and 1999 to 2014 sampled at sea by the Observer Programme. n, number of tows sampled; no., number of fish sampled.


Figure 23 ctd.

Females


Figure 23 ctd.


Figure 24: Length frequency distributions of hoki taken in commercial catches from the ECSI spawning fishery from 2001 to 2013 sampled by the Scientific Observer Programme (2001-2006, 2008-2013) and combined with Hoki Management Company data (2001 to 2005). There were no samples in 2007 or 2014. n, number of tows sampled; no., number of fish sampled.


Fishing year

Figure 25: Percentage of hoki TCEPR, CELR and TCER catch, hoki length frequency samples and hoki otoliths collected by the Observer Programme, by target species for the Chatham Rise fishery from 200001 to 2013-14. Three-letter codes denote target species: HOK, hoki; ORH, orange roughy; OEO, oreos; SQU, squid; SWA, silver warehou; HAK, hake; SCI, scampi; LIN, ling; BAR, barracouta; SPE, sea perch; Other, all other target species combined.


Figure 26: Length frequency distributions of hoki taken in commercial catches from the Chatham Rise fishery from 1990-91 to 2013-14 sampled by the Observer Programme (and combined with Hoki Management Company data in 2000-01 to 2003-04). 2006-07 data include target hoki and hake tows. n, number of tows sampled; no., number of fish sampled.

Females


Figure 26 ctd.

Females


Figure 26 ctd.


Figure 27: Proportions at age and sex in the catch from the Chatham Rise fishery as estimated by direct ageing of otoliths from 2000-01 to 2013-14. Dark grey bars show 1997-99 year-classes; black bars show 2000-02 year-classes; light grey bars show 2003-2005 year-classes.


Figure 28: Comparison of Chatham Rise 2013-14 Observer Programme catch coverage with TCEPR catches by day of year, depth, latitude, longitude, and vessel length (m). If sampling is representative of the fishery, then blue lines (observed catches) should overlay black lines (TCEPR catch).


Fishing year

Figure 29: Percentages of hoki TCEPR, TCER and CELR catch, hoki length frequency samples, and hoki otoliths collected by the Observer Programme, by target species for the Sub-Antarctic fishery from 200001 to 2013-14. Three-letter codes denote target species: HOK, hoki; HAK, hake; SQU, squid; ORH, orange roughy, SSO, smooth oreo; OEO, oreo; SWA, silver warehou; SBW, southern blue whiting; SCI, scampi; LIN, ling; WWA, white warehou; Other, other target species combined.


Figure 30: Length frequency distributions of hoki taken in commercial catches from the Sub-Antarctic fishery from 1990-91 to 2013-14 sampled by the Observer Programme (and combined with Hoki Management Company data in 2000-01 to 2004-05). 2006-07 data includes target hoki and ling tows only. n, number of tows sampled; no., number of fish sampled.


Figure 30 ctd.

Females


Figure 30 ctd.


Figure 31: Proportions at age and sex in the catch from the Sub-Antarctic fishery as estimated by direct ageing of otoliths from 2000-01 to 2013-14. Dark grey bars show 1997-99 year-classes; black bars show 2000-02 year-classes; light grey bars show 2003-2005 year-classes.


Figure 32: Comparison of Sub-Antarctic 2013-14 Observer Programme catch coverage with TCEPR catches by day of year, depth, latitude, longitude and vessel length (m). If sampling is representative of the fishery, then blue lines (observed catches) should overlay black lines (TCEPR catch).


Relative ranks of LFs

Sub-Antarctic, $p<0.001$


Relative ranks of LFs

Figure 33: Histograms of ranks of the lengths that yielded 2013-14 Chatham Rise and Sub-Antarctic otoliths relative to the lengths of hoki measured for each tow. If sampling is random then the expected counts are given by the dotted line. The p-value is calculated using the rank-sum test.


Figure 34: Length frequency distributions of female and male hoki taken in commercial catches from different areas during the 2013-14 fishing year. All areas sampled by the Observer Programme.


Figure 35: Scaled length frequency distributions for hoki from Sub-Antarctic Tangaroa trawl surveys. n, population numbers of fish; CV, coefficients of variation; no., number of fish measured.

Females


Figure 35 ctd.


Figure 36: Scaled age frequency distributions for hoki from Sub-Antarctic Tangaroa trawl surveys 19912014.


Figure 36 ctd.

## APPENDICES

Table A1a: Number of vessels, tows, and total catch inside and outside the 25 nautical mile line off WCSI, by year. Data source ungroomed non-zero TCEPR, TCER, and CELR data. Year defined as June to October. There were no October data available for 2014. It is assumed that CELR data all comes from inside the $\mathbf{2 5}$ nautical mile line, and includes mid-water and bottom trawl tows reported on the CELR form only.

| Fishing year | Number of vessels |  |  |  |  | Number of tows |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TCEPR <br> Outside | $\begin{array}{r} \text { TCER } \\ \text { Outside } \end{array}$ | TCEPR <br> Inside | TCER <br> Inside | CELR | TCEPR Outside | $\begin{array}{r} \text { TCER } \\ \text { Outside } \end{array}$ | TCEPR <br> Inside | TCER <br> Inside | CELR |
| 1990 | 79 | - | 37 | - | 13 | 7989 | - | 83 | - | 196 |
| 1991 | 75 | - | 41 | - | 17 | 8135 | - | 68 | - | 302 |
| 1992 | 71 | - | 25 | - | 17 | 6171 | - | 47 | - | 358 |
| 1993 | 64 | - | 22 | - | 18 | 6886 | - | 108 | - | 511 |
| 1994 | 69 | - | 30 | - | 18 | 8463 | - | 137 | - | 425 |
| 1995 | 65 | - | 36 | - | 21 | 8521 | - | 189 | - | 319 |
| 1996 | 59 | - | 27 | - | 23 | 6631 | - | 157 | - | 583 |
| 1997 | 73 | - | 45 | - | 23 | 7597 | - | 440 | - | 747 |
| 1998 | 67 | - | 35 | - | 23 | 7609 | - | 365 | - | 449 |
| 1999 | 53 | - | 34 | - | 18 | 6835 | - | 280 | - | 624 |
| 2000 | 47 | - | 28 | - | 15 | 6624 | - | 725 | - | 855 |
| 2001 | 52 | - | 45 | - | 16 | 6960 | - | 1380 | - | 819 |
| 2002 | 47 | - | 37 | - | 13 | 6401 | - | 1253 | - | 563 |
| 2003 | 44 | - | 29 | - | 8 | 6619 | - | 829 | - | 680 |
| 2004 | 42 | - | 31 | - | 10 | 5133 | - | 1271 | - | 748 |
| 2005 | 37 | - | 15 | - | 10 | 3623 | - | 530 | - | 464 |
| 2006 | 35 | - | 20 | - | 5 | 3993 | - | 210 | - | 348 |
| 2007 | 30 | - | 9 | - | 6 | 2620 | - | 146 | - | 253 |
| 2008 | 24 | 5 | 8 | 9 | - | 2335 | 18 | 45 | 155 | - |
| 2009 | 25 | 6 | 3 | 11 | - | 1961 | 15 | 3 | 253 | - |
| 2010 | 28 | 5 | 8 | 12 | - | 2318 | 13 | 56 | 313 | - |
| 2011 | 29 | 6 | 9 | 16 | - | 2802 | 40 | 298 | 474 | - |
| 2012 | 29 | 9 | 12 | 14 | - | 2848 | 54 | 379 | 488 | - |
| 2013 | 24 | 10 | 11 | 13 | - | 3057 | 91 | 181 | 588 | - |
| 2014 | 25 | 9 | 9 | 13 | - | 3469 | 127 | 383 | 666 | - |


| Fishing year |  |  |  |  |  |  | Catches (kg) |  | Percent Inside |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TCEPR Outside | TCER Outside | Total Outside | TCEPR Inside | TCER Inside | CELR | Total Inside | Total Overall |  |
| 1990 | 158447 | - | 158447 | 1585 | - | 339 | 1924 | 160371 |  |
| 1991 | 128259 | - | 128259 | 1015 | - | 222 | 1237 | 129496 | 1 |
| 1992 | 100507 | - | 100507 | 849 | - | 184 | 1033 | 101540 | 1 |
| 1993 | 95402 | - | 95402 | 737 | - | 522 | 1259 | 96661 | 1 |
| 1994 | 113833 | - | 113833 | 1110 | - | 693 | 1803 | 115636 | 1 |
| 1995 | 79083 | - | 79083 | 1851 | - | 747 | 2598 | 81681 | 3 |
| 1996 | 67247 | - | 67247 | 2492 | - | 1908 | 4400 | 71647 | 3 |
| 1997 | 82141 | - | 82141 | 5637 | - | 2360 | 7997 | 90138 | 6 |
| 1998 | 96144 | - | 96144 | 5522 | - | 2610 | 8132 | 104276 | 5 |
| 1999 | 85486 | - | 85486 | 4295 | - | 3846 | 8141 | 93627 | 5 |
| 2000 | 87547 | - | 87547 | 9443 | - | 4719 | 14162 | 101709 | 9 |
| 2001 | 80508 | - | 80508 | 16627 | - | 4979 | 21606 | 102114 | 16 |
| 2002 | 70674 | - | 70674 | 17846 | - | 4180 | 22026 | 92700 | 19 |
| 2003 | 57211 | - | 57211 | 11583 | - | 4944 | 16527 | 73738 | 16 |
| 2004 | 26287 | - | 26287 | 13922 | - | 4885 | 18807 | 45094 | 31 |
| 2005 | 24820 | - | 24820 | 5574 | - | 2223 | 7797 | 32617 | 17 |
| 2006 | 33131 | - | 33131 | 2681 | - | 2438 | 5119 | 38250 | 7 |
| 2007 | 30192 | - | 30192 | 1128 | - | 1962 | 3090 | 33282 | 3 |
| 2008 | 19926 | 32 | 19958 | 327 | 567 | - | 894 | 20852 | 4 |
| 2009 | 19285 | 23 | 19308 | 36 | 1102 | - | 1138 | 20446 | 6 |
| 2010 | 33178 | 36 | 33214 | 951 | 1983 | - | 2934 | 36148 | 8 |
| 2011 | 40653 | 168 | 40821 | 4047 | 3441 | - | 7488 | 48309 | 16 |
| 2012 | 45837 | 148 | 45985 | 4641 | 3598 | - | 8239 | 54224 | 15 |
| 2013 | 49039 | 97 | 49136 | 2596 | 3589 | - | 6185 | 55321 | 11 |
| 2014 | 58650 | 124 | 58774 | 4593 | 4451 | - | 9044 | 67818 | 13 |

Table A1b: Number of TCEPR, TCER and CELR Cook Strait tows, total catch, and number of vessels by year. Data source is un-groomed non-zero TCEPR, TCER, and CELR tows catching hoki. 'CELR trawl' includes mid-water and bottom trawl tows reported on the CELR form only. Year defined as June to October. There were no October data available for 2014.

| Fishing year | Number of vessels |  |  |  | Number of tows |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TCEPR | TCER | CELR | Total | TCEPR | TCER | CELR | Total |
| 1990 | 18 | - | 30 | 48 | 1071 | - | 568 | 1639 |
| 1991 | 22 | - | 41 | 63 | 2097 | - | 1510 | 3607 |
| 1992 | 24 | - | 31 | 55 | 1684 | - | 845 | 2529 |
| 1993 | 20 | - | 30 | 50 | 1532 | - | 934 | 2466 |
| 1994 | 31 | - | 39 | 70 | 1957 | - | 1377 | 3334 |
| 1995 | 26 | - | 33 | 59 | 2291 | - | 1266 | 3557 |
| 1996 | 42 | - | 37 | 79 | 4700 | - | 1485 | 6185 |
| 1997 | 40 | - | 28 | 68 | 4921 | - | 1061 | 5982 |
| 1998 | 31 | - | 28 | 59 | 3022 | - | 1317 | 4339 |
| 1999 | 21 | - | 28 | 49 | 2656 | - | 942 | 3598 |
| 2000 | 22 | - | 32 | 54 | 2372 | - | 1157 | 3529 |
| 2001 | 25 | - | 23 | 48 | 2042 | - | 981 | 3023 |
| 2002 | 19 | - | 22 | 41 | 1127 | - | 531 | 1658 |
| 2003 | 21 | - | 25 | 46 | 1933 | - | 998 | 2931 |
| 2004 | 20 | - | 31 | 51 | 1863 | - | 1134 | 2997 |
| 2005 | 15 | - | 15 | 30 | 1454 | - | 476 | 1930 |
| 2006 | 13 | - | 13 | 26 | 1067 | - | 328 | 1395 |
| 2007 | 8 | - | 14 | 22 | 980 | - | 491 | 1471 |
| 2008 | 7 | 20 | - | 27 | 668 | 581 | - | 1249 |
| 2009 | 10 | 21 | 1 | 32 | 878 | 551 | 1 | 1430 |
| 2010 | 8 | 18 | - | 26 | 841 | 523 | - | 1364 |
| 2011 | 7 | 20 | - | 27 | 519 | 571 | - | 1090 |
| 2012 | 9 | 20 | - | 29 | 779 | 401 | - | 1180 |
| 2013 | 10 | 20 | - | 30 | 971 | 359 | - | 1330 |
| 2014 | 10 | 20 | - | 30 | 965 | 385 | - | 1350 |


|  |  | Catches (kg) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Fishing year | TCEPR | TCER | CELR | Total |
| 1990 | 12109 | - | 2596 | 14705 |
| 1991 | 22153 | - | 7013 | 29166 |
| 1992 | 19583 | - | 4973 | 24556 |
| 1993 | 17533 | - | 4199 | 21732 |
| 1994 | 26785 | - | 9071 | 35856 |
| 1995 | 26600 | - | 7361 | 33962 |
| 1996 | 50986 | - | 8018 | 59005 |
| 1997 | 49946 | - | 6562 | 56508 |
| 1998 | 36308 | - | 9408 | 45716 |
| 1999 | 34040 | - | 6222 | 40262 |
| 2000 | 30603 | - | 8986 | 39588 |
| 2001 | 24630 | - | 8188 | 32818 |
| 2002 | 17628 | - | 4104 | 21732 |
| 2003 | 27341 | - | 7271 | 34613 |
| 2004 | 28509 | - | 10520 | 39030 |
| 2005 | 18482 | - | 4369 | 22851 |
| 2006 | 16670 | - | 3035 | 19704 |
| 2007 | 12594 | - | 5403 | 17997 |
| 2008 | 9215 | 6661 | - | 15876 |
| 2009 | 10044 | 5112 | - | 15156 |
| 2010 | 10916 | 4875 | - | 15791 |
| 2011 | 7315 | 4519 | - | 11834 |
| 2012 | 9998 | 3154 | - | 13152 |
| 2013 | 12304 | 3119 | - | 15423 |
| 2014 | 11690 | 3163 | - | 14853 |

Table A1c: Number of Chatham Rise and ECSI vessels, tows and catch for all vessels by year for the nonspawning season. Data source is un-groomed non-zero TCEPR, TCER, and CELR tows catching hoki. 'CELR' includes all fishing methods reported on the CELR form, and 'CELR trawl' includes mid-water and bottom trawl tows only. Chatham Rise data includes data from October to September, and ECSI data includes data from October to May.

| Fishing year | Number of vessels |  |  |  | Number of tows |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TCEPR | TCER | CELR | Total | TCEPR | TCER | CELR | Total |
| 1990 | 47 | - | 23 | 70 | 3325 | - | 529 | 3854 |
| 1991 | 69 | - | 38 | 107 | 5724 | - | 900 | 6624 |
| 1992 | 76 | - | 30 | 106 | 8601 | - | 539 | 9140 |
| 1993 | 75 | - | 29 | 104 | 8575 | - | 512 | 9087 |
| 1994 | 78 | - | 26 | 104 | 6447 | - | 525 | 6972 |
| 1995 | 87 | - | 31 | 118 | 10028 | - | 675 | 10703 |
| 1996 | 102 | - | 26 | 128 | 11651 | - | 405 | 12056 |
| 1997 | 105 | - | 18 | 123 | 12609 | - | 303 | 12912 |
| 1998 | 97 | - | 18 | 115 | 16176 | - | 212 | 16388 |
| 1999 | 87 | - | 24 | 111 | 14984 | - | 421 | 15405 |
| 2000 | 70 | - | 16 | 86 | 13432 | - | 330 | 13762 |
| 2001 | 68 | - | 11 | 79 | 12360 | - | 373 | 12733 |
| 2002 | 60 | - | 14 | 74 | 10343 | - | 280 | 10623 |
| 2003 | 63 | - | 15 | 78 | 11400 | - | 255 | 11655 |
| 2004 | 59 | - | 11 | 70 | 9511 | - | 211 | 9722 |
| 2005 | 51 | - | 12 | 63 | 7418 | - | 132 | 7550 |
| 2006 | 52 | - | 14 | 66 | 7314 | - | 134 | 7448 |
| 2007 | 47 | - | 11 | 58 | 7324 | - | 153 | 7477 |
| 2008 | 42 | 11 | - | 53 | 7012 | 65 | - | 7077 |
| 2009 | 37 | 12 | 1 | 50 | 6227 | 79 | 2 | 6308 |
| 2010 | 39 | 16 | - | 55 | 6003 | 278 | - | 6281 |
| 2011 | 39 | 14 | - | 53 | 5446 | 140 | - | 5586 |
| 2012 | 37 | 13 | - | 50 | 5647 | 190 | - | 5837 |
| 2013 | 39 | 14 | - | 53 | 5456 | 416 | - | 5872 |
| 2014 | 39 | 17 | - | 56 | 5421 | 414 | - | 5835 |


|  |  | Catches (kg) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Fishing year | TCEPR | TCER | CELR | Total |
| 1990 | 13091 | - | 71 | 13161 |
| 1991 | 29965 | - | 162 | 30126 |
| 1992 | 48036 | - | 99 | 48134 |
| 1993 | 44169 | - | 63 | 44231 |
| 1994 | 22662 | - | 63 | 22725 |
| 1995 | 38991 | - | 182 | 39173 |
| 1996 | 50283 | - | 86 | 50368 |
| 1997 | 55726 | - | 93 | 55819 |
| 1998 | 77105 | - | 93 | 77197 |
| 1999 | 72656 | - | 929 | 73585 |
| 2000 | 55912 | - | 98 | 56010 |
| 2001 | 49307 | - | 532 | 49840 |
| 2002 | 39105 | - | 38 | 39144 |
| 2003 | 39071 | - | 17 | 39088 |
| 2004 | 33608 | - | 39 | 33647 |
| 2005 | 30423 | - | 8 | 30432 |
| 2006 | 34934 | - | 6 | 34941 |
| 2007 | 37797 | - | 10 | 37806 |
| 2008 | 37855 | 60 | - | 37915 |
| 2009 | 38997 | 8 | - | 39005 |
| 2010 | 39086 | 47 | - | 39133 |
| 2011 | 38402 | 40 | - | 38442 |
| 2012 | 39169 | 72 | - | 39241 |
| 2013 | 36442 | 89 | - | 36531 |
| 2014 | 33698 | 45 | - | 33743 |

Table A1d: Number of ECSI vessels, tows and catch for all vessels by year for the spawning season. Data source is un-groomed non-zero TCEPR, TCER, and CELR tows catching hoki. Year defined as June to October. 'CELR trawl' includes mid-water and bottom trawl tows reported on the CELR form only. There were no data available for October 2014.

|  | Number of vessels |  |  |  | Number of tows |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing year | TCEPR | TCER | CELR | Total | TCEPR | TCER | CELR | Total |
| 1990 | 8 | - | 17 | 25 | 45 | - | 123 | 168 |
| 1991 | 12 | - | 20 | 32 | 134 | - | 234 | 368 |
| 1992 | 10 | - | 12 | 22 | 106 | - | 242 | 348 |
| 1993 | 9 | - | 13 | 22 | 32 | - | 274 | 306 |
| 1994 | 9 | - | 12 | 21 | 44 | - | 215 | 259 |
| 1995 | 12 | - | 10 | 22 | 48 | - | 72 | 120 |
| 1996 | 26 | - | 10 | 36 | 192 | - | 77 | 269 |
| 1997 | 21 | - | 6 | 27 | 194 | - | 154 | 348 |
| 1998 | 20 | - | 6 | 26 | 213 | - | 81 | 294 |
| 1999 | 19 | - | 9 | 28 | 141 | - | 151 | 292 |
| 2000 | 16 | - | 9 | 25 | 126 | - | 229 | 355 |
| 2001 | 16 | - | 8 | 24 | 197 | - | 251 | 448 |
| 2002 | 17 | - | 10 | 27 | 257 | - | 146 | 403 |
| 2003 | 21 | - | 11 | 32 | 555 | - | 219 | 774 |
| 2004 | 14 | - | 10 | 24 | 114 | - | 248 | 362 |
| 2005 | 12 | - | 3 | 15 | 284 | - | 69 | 353 |
| 2006 | 6 | - | 5 | 11 | 141 | - | 76 | 217 |
| 2007 | 12 | - | 4 | 16 | 108 | - | 27 | 135 |
| 2008 | 10 | 4 | - | 14 | 239 | 47 | - | 286 |
| 2009 | 11 | 3 | - | 14 | 103 | 37 | - | 140 |
| 2010 | 10 | 4 | - | 14 | 78 | 97 | - | 175 |
| 2011 | 8 | 5 | - | 13 | 129 | 74 | - | 203 |
| 2012 | 11 | 6 | - | 17 | 183 | 88 | - | 271 |
| 2013 | 12 | 6 | - | 18 | 245 | 55 | - | 300 |
| 2014 | 13 | 6 | - | 19 | 188 | 18 | - | 206 |


|  |  | Catches (kg) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Fishing year | TCEPR | TCER | CELR | Total |
| 1990 | 51 | - | 229 | 280 |
| 1991 | 841 | - | 503 | 1345 |
| 1992 | 547 | - | 396 | 943 |
| 1993 | 137 | - | 172 | 309 |
| 1994 | 164 | - | 353 | 517 |
| 1995 | 52 | - | 103 | 155 |
| 1996 | 1199 | - | 103 | 1301 |
| 1997 | 817 | - | 973 | 1790 |
| 1998 | 1300 | - | 371 | 1671 |
| 1999 | 765 | - | 1329 | 2094 |
| 2000 | 599 | - | 1822 | 2421 |
| 2001 | 1658 | - | 760 | 2418 |
| 2002 | 2806 | - | 225 | 3031 |
| 2003 | 6460 | - | 1006 | 7466 |
| 2004 | 1370 | - | 927 | 2297 |
| 2005 | 4683 | - | 50 | 4733 |
| 2006 | 1137 | - | 57 | 1194 |
| 2007 | 1001 | - | 63 | 1064 |
| 2008 | 2302 | 40 | - | 2342 |
| 2009 | 1117 | 29 | - | 1146 |
| 2010 | 600 | 138 | - | 738 |
| 2011 | 1504 | 152 | - | 1657 |
| 2012 | 2355 | 175 | - | 2530 |
| 2013 | 3284 | 110 | - | 3394 |
| 2014 | 2758 | 38 | - | 2796 |

Table A1e: Number of Sub-Antarctic vessels, tows and catch for all vessels by fishing year. Data source is un-groomed non-zero TCEPR, TCER, and CELR tows catching hoki. 'CELR trawl' includes mid-water and bottom trawl tows reported on the CELR form only.

| Fishing year | Number of vessels |  |  |  | Number of tows |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TCEPR | TCER | CELR | Total | TCEPR | TCER | CELR | Total |
| 1990 | 64 | - | - | 64 | 2787 | - | - | 2787 |
| 1991 | 66 | - | - | 66 | 4617 | - | - | 4617 |
| 1992 | 76 | - | - | 76 | 7025 | - | - | 7025 |
| 1993 | 63 | - | 2 | 65 | 6143 | - | 4 | 6147 |
| 1994 | 65 | - | - | 65 | 3718 | - | - | 3718 |
| 1995 | 62 | - | - | 62 | 3585 | - | - | 3585 |
| 1996 | 68 | - | 1 | 69 | 4170 | - | 2 | 4172 |
| 1997 | 74 | - | - | 74 | 5003 | - | - | 5003 |
| 1998 | 68 | - | 1 | 69 | 5419 | - | 4 | 5423 |
| 1999 | 68 | - | - | 68 | 5145 | - | - | 5145 |
| 2000 | 56 | - | 1 | 57 | 7677 | - | 3 | 7680 |
| 2001 | 56 | - | - | 56 | 7401 | - | - | 7401 |
| 2002 | 55 | - | 1 | 56 | 8443 | - | 25 | 8468 |
| 2003 | 50 | - | 3 | 53 | 5689 | - | 10 | 5699 |
| 2004 | 46 | - | - | 46 | 3850 | - | - | 3850 |
| 2005 | 43 | - | - | 43 | 2638 | - | - | 2638 |
| 2006 | 41 | - | - | 41 | 2507 | - | - | 2507 |
| 2007 | 36 | - | - | 36 | 3004 | - | - | 3004 |
| 2008 | 35 | - | - | 35 | 2731 | - | - | 2731 |
| 2009 | 32 | 1 | - | 33 | 2914 | 1 | - | 2915 |
| 2010 | 34 | 2 | - | 36 | 3171 | 2 | - | 3173 |
| 2011 | 35 | 1 | - | 36 | 2931 | 1 | - | 2932 |
| 2012 | 34 | 3 | - | 37 | 2731 | 3 | - | 2734 |
| 2013 | 35 | 1 | - | 36 | 2844 | 1 | - | 2845 |
| 2014 | 30 | 1 | - | 31 | 3385 | 2 | - | 3387 |


|  |  | Catches (kg) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Fishing year | TCEPR | TCER | CELR | Total |
| 1990 | 11748 | - | - | 11748 |
| 1991 | 16669 | - | - | 16669 |
| 1992 | 30688 | - | - | 30688 |
| 1993 | 24836 | - | - | 24836 |
| 1994 | 11636 | - | - | 11636 |
| 1995 | 13128 | - | - | 13128 |
| 1996 | 14269 | - | 1 | 14270 |
| 1997 | 21771 | - | - | 21771 |
| 1998 | 25129 | - | 1 | 25129 |
| 1999 | 23753 | - | - | 23753 |
| 2000 | 33772 | - | - | 33772 |
| 2001 | 30076 | - | - | 30076 |
| 2002 | 30175 | - | - | 30175 |
| 2003 | 20194 | - | 5 | 20199 |
| 2004 | 11635 | - | - | 11635 |
| 2005 | 6337 | - | - | 6337 |
| 2006 | 6961 | - | - | 6961 |
| 2007 | 7661 | - | - | 7661 |
| 2008 | 8708 | - | - | 8708 |
| 2009 | 9807 | - | - | 9807 |
| 2010 | 12275 | - | - | 12275 |
| 2011 | 12655 | - | - | 12655 |
| 2012 | 15743 | - | - | 15743 |
| 2013 | 14099 | - | - | 14099 |
| 2014 | 19925 | 1 | - | 19925 |

Table A1f: Number of Puysegur vessels, tows and catch for all vessels by year for the spawning season. Data source is un-groomed non-zero TCEPR, TCER, and CELR tows catching hoki. Year defined as June to December. 'CELR trawl' includes mid-water and bottom trawl tows reported on the CELR form only. There were no October to December data available for 2014.

| Fishing year | Number of vessels |  |  |  | Number of tows |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TCEPR | TCER | CELR | Total | TCEPR | TCER | CELR | Total |
| 1990 | 44 | - | - | 44 | 992 | - | - | 992 |
| 1991 | 41 | - | - | 41 | 780 | - | - | 780 |
| 1992 | 40 | - | - | 40 | 918 | - | - | 918 |
| 1993 | 28 | - | 2 | 30 | 385 | - | 10 | 395 |
| 1994 | 38 | - | 2 | 40 | 407 | - | 16 | 423 |
| 1995 | 28 | - | 2 | 30 | 422 | - | 6 | 428 |
| 1996 | 29 | - | - | 29 | 609 | - | - | 609 |
| 1997 | 39 | - | - | 39 | 799 | - | - | 799 |
| 1998 | 32 | - | - | 32 | 539 | - | - | 539 |
| 1999 | 30 | - | 1 | 31 | 535 | - | 3 | 538 |
| 2000 | 25 | - | 1 | 26 | 584 | - | 29 | 613 |
| 2001 | 37 | - | 1 | 38 | 856 | - | 8 | 864 |
| 2002 | 27 | - | 2 | 29 | 555 | - | 16 | 571 |
| 2003 | 31 | - | 1 | 32 | 493 | - | 10 | 503 |
| 2004 | 16 | - | 1 | 17 | 213 | - | 20 | 233 |
| 2005 | 24 | - | 1 | 25 | 468 | - | 12 | 480 |
| 2006 | 21 | - | 1 | 22 | 361 | - | 23 | 384 |
| 2007 | 14 | - | 2 | 16 | 191 | - | 21 | 212 |
| 2008 | 16 | - | - | 16 | 212 | - | , | 212 |
| 2009 | 8 | 1 | - | 9 | 146 | 12 | - | 158 |
| 2010 | 12 | 1 | - | 13 | 108 | 1 | - | 109 |
| 2011 | 13 | 4 | - | 17 | 178 | 13 | - | 191 |
| 2012 | 15 | 3 | - | 18 | 215 | 22 | - | 237 |
| 2013 | 15 | 2 | - | 17 | 130 | 6 | - | 136 |
| 2014 | 11 | 2 | - | 13 | 137 | 18 | - | 155 |


|  |  | Catches (kg) |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Fishing year | TCEPR | TCER | CELR | Total |
| 1990 | 7378 | - | - | 7378 |
| 1991 | 4870 | - | - | 4870 |
| 1992 | 4744 | - | - | 4744 |
| 1993 | 2039 | - | - | 2039 |
| 1994 | 2382 | - | - | 2382 |
| 1995 | 1413 | - | - | 1413 |
| 1996 | 2401 | - | - | 2401 |
| 1997 | 5847 | - | - | 5847 |
| 1998 | 2137 | - | - | 2137 |
| 1999 | 2867 | - | 4 | 2871 |
| 2000 | 2757 | - | - | 2757 |
| 2001 | 6586 | - | 1 | 6587 |
| 2002 | 5222 | - | 7 | 5229 |
| 2003 | 5821 | - | 16 | 5837 |
| 2004 | 1124 | - | 5 | 1129 |
| 2005 | 5480 | - | - | 5481 |
| 2006 | 1321 | - | 6 | 1327 |
| 2007 | 376 | - | 9 | 385 |
| 2008 | 304 | - | - | 304 |
| 2009 | 198 | 4 | - | 203 |
| 2010 | 198 | 2 | - | 200 |
| 2011 | 1155 | 2 | - | 1157 |
| 2012 | 144 | 1 | - | 1145 |
| 2013 | 647 | - | - | 648 |
| 2014 | 647 | 7 | - | 654 |

Table A2a: Number of tows, vessels, median tow duration, catch per tow, and catch per hour for all WCSI vessels by year. Year defined as June to October. There were no October data available for 2014. Data are non-zero catches for TCEPR midwater tows.

MW tows (all target species):

| Fishing <br> year | Number of <br> vessels | Total <br> catch $\mathbf{( t )}$ | Number of <br> tows |
| :--- | ---: | ---: | ---: |
| 1990 | 69 | 149295 | 6780 |
| 1991 | 66 | 118323 | 6744 |
| 1992 | 61 | 92024 | 5193 |
| 1993 | 57 | 82529 | 5263 |
| 1994 | 63 | 105195 | 7139 |
| 1995 | 59 | 75148 | 7408 |
| 1996 | 59 | 64802 | 5171 |
| 1997 | 76 | 82639 | 6611 |
| 1998 | 66 | 95864 | 6695 |
| 1999 | 56 | 76767 | 5256 |
| 2000 | 52 | 79535 | 5316 |
| 2001 | 62 | 78853 | 5879 |
| 2002 | 56 | 61528 | 4654 |
| 2003 | 51 | 51751 | 4312 |
| 2004 | 51 | 32049 | 4230 |
| 2005 | 37 | 19682 | 2365 |
| 2006 | 36 | 21067 | 2015 |
| 2007 | 31 | 21093 | 1432 |
| 2008 | 15 | 12047 | 886 |
| 2009 | 23 | 12590 | 887 |
| 2010 | 26 | 23033 | 1216 |
| 2011 | 24 | 29603 | 1554 |
| 2012 | 24 | 30122 | 1567 |
| 2013 | 26 | 33858 | 1811 |
| 2014 | 43802 | 2317 |  |
|  |  |  |  |
| All years | 240 | 1493202 | 102661 |

MW tows (Target hoki tows):

| Fishing year | Number of vessels | $\begin{array}{r} \text { Total } \\ \text { catch }(t) \end{array}$ | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 69 | 149263 | 6736 | 4.2 | 10.3 | 2.6 |
| 1991 | 66 | 118202 | 6727 | 4.0 | 10.2 | 2.6 |
| 1992 | 60 | 91904 | 5141 | 3.6 | 12.4 | 3.6 |
| 1993 | 56 | 82133 | 5030 | 3.1 | 10.5 | 4.1 |
| 1994 | 62 | 105007 | 6978 | 3.0 | 9.5 | 3.3 |
| 1995 | 59 | 74715 | 7145 | 3.5 | 4.9 | 1.4 |
| 1996 | 59 | 64735 | 5115 | 3.5 | 6.8 | 1.9 |
| 1997 | 76 | 82222 | 6505 | 3.8 | 7.9 | 2.1 |
| 1998 | 66 | 95670 | 6630 | 3.5 | 10.4 | 2.8 |
| 1999 | 56 | 76532 | 5142 | 3.1 | 10.3 | 3.4 |
| 2000 | 51 | 79269 | 5194 | 2.7 | 12.0 | 4.5 |
| 2001 | 62 | 78512 | 5726 | 2.6 | 9.3 | 3.6 |
| 2002 | 56 | 61336 | 4579 | 2.3 | 9.8 | 4.3 |
| 2003 | 51 | 51466 | 4208 | 3.0 | 8.1 | 2.5 |
| 2004 | 51 | 31874 | 4152 | 2.3 | 4.9 | 1.6 |
| 2005 | 37 | 19620 | 2266 | 2.4 | 5.7 | 2.0 |
| 2006 | 34 | 20729 | 1734 | 2.6 | 8.5 | 3.2 |
| 2007 | 31 | 20786 | 1136 | 2.8 | 15.0 | 5.5 |
| 2008 | 13 | 11841 | 806 | 1.7 | 7.3 | 4.7 |
| 2009 | 15 | 12367 | 685 | 2.7 | 14.2 | 5.0 |
| 2010 | 23 | 22884 | 1172 | 2.5 | 17.1 | 5.5 |
| 2011 | 24 | 29468 | 1495 | 2.0 | 17.4 | 8.5 |
| 2012 | 27 | 30071 | 1559 | 2.1 | 16.3 | 7.9 |
| 2013 | 24 | 33705 | 1793 | 2.6 | 15.4 | 6.2 |
| 2014 | 26 | 43767 | 2298 | 2.8 | 15.2 | 6.0 |
| All years | 240 | 1488080 | 99952 | 3.2 | 9.7 | 3.0 |

Table A2b: Number of tows, vessels, median tow duration, catch per tow, and catch per hour for all WCSI vessels by year. Year defined as June to October. There were no October data available for 2014. Data are non-zero catches for TCEPR bottom tows.

## All target species BT tows:

| Fishing year | Number of vessels | Total catch (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 41 | 10737 | 1292 | 4.0 | 3.2 | 0.8 |
| 1991 | 36 | 10951 | 1458 | 4.0 | 3.6 | 0.9 |
| 1992 | 38 | 9334 | 1036 | 4.1 | 4.1 | 1.0 |
| 1993 | 33 | 13656 | 1727 | 3.8 | 5.2 | 1.4 |
| 1994 | 32 | 9703 | 1468 | 4.2 | 3.7 | 0.8 |
| 1995 | 27 | 5809 | 1331 | 4.5 | 2.5 | 0.5 |
| 1996 | 38 | 4914 | 1586 | 4.7 | 2.1 | 0.4 |
| 1997 | 47 | 5145 | 1442 | 5.0 | 2.2 | 0.5 |
| 1998 | 40 | 5925 | 1308 | 5.2 | 2.9 | 0.5 |
| 1999 | 39 | 12894 | 1835 | 4.7 | 4.1 | 0.8 |
| 2000 | 34 | 17487 | 2064 | 4.5 | 6.0 | 1.2 |
| 2001 | 40 | 18238 | 2399 | 4.5 | 5.0 | 0.9 |
| 2002 | 35 | 26993 | 3005 | 5.0 | 5.2 | 1.0 |
| 2003 | 39 | 17057 | 3197 | 5.3 | 2.3 | 0.4 |
| 2004 | 35 | 8174 | 2154 | 6.0 | 1.5 | 0.3 |
| 2005 | 30 | 10708 | 1801 | 6.6 | 2.5 | 0.4 |
| 2006 | 26 | 14723 | 2145 | 8.3 | 2.8 | 0.4 |
| 2007 | 22 | 10252 | 1344 | 7.1 | 3.1 | 0.4 |
| 2008 | 17 | 8179 | 1472 | 9.0 | 2.4 | 0.3 |
| 2009 | 18 | 6735 | 1083 | 9.2 | 3.0 | 0.3 |
| 2010 | 21 | 11116 | 1171 | 7.2 | 4.9 | 0.8 |
| 2011 | 21 | 15075 | 1565 | 6.1 | 6.2 | 1.0 |
| 2012 | 23 | 20353 | 1656 | 5.2 | 9.9 | 1.9 |
| 2013 | 18 | 17777 | 1427 | 5.1 | 10.8 | 2.3 |
| 2014 | 17 | 19315 | 1523 | 5.2 | 10.2 | 1.8 |
| All years | 144 | 311248 | 42489 | 5.0 | 3.6 | 0.7 |

Target hoki BT tows:

| Fishing year | Number of vessels | Total catch (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 34 | 10597 | 1129 | 4.2 | 4.1 | 1.1 |
| 1991 | 31 | 10877 | 1321 | 4.0 | 4.1 | 1.1 |
| 1992 | 28 | 9152 | 791 | 4.0 | 7.0 | 1.7 |
| 1993 | 29 | 13611 | 1588 | 3.8 | 5.9 | 1.6 |
| 1994 | 29 | 9679 | 1369 | 4.3 | 4.2 | 0.9 |
| 1995 | 24 | 5794 | 1290 | 4.5 | 2.5 | 0.5 |
| 1996 | 37 | 4885 | 1544 | 4.7 | 2.1 | 0.4 |
| 1997 | 42 | 5115 | 1354 | 5.0 | 2.5 | 0.5 |
| 1998 | 34 | 5888 | 1217 | 5.3 | 3.1 | 0.5 |
| 1999 | 35 | 12856 | 1689 | 4.7 | 5.1 | 1.0 |
| 2000 | 32 | 17417 | 1903 | 4.4 | 6.3 | 1.4 |
| 2001 | 37 | 18216 | 2314 | 4.6 | 5.0 | 1.0 |
| 2002 | 34 | 26724 | 2839 | 5.0 | 5.9 | 1.1 |
| 2003 | 39 | 16793 | 2791 | 5.1 | 3.0 | 0.6 |
| 2004 | 34 | 7911 | 1799 | 5.7 | 2.0 | 0.4 |
| 2005 | 27 | 9732 | 1240 | 5.6 | 4.5 | 0.8 |
| 2006 | 24 | 13087 | 1405 | 7.0 | 5.0 | 0.8 |
| 2007 | 20 | 8874 | 731 | 4.8 | 9.3 | 1.7 |
| 2008 | 13 | 5246 | 480 | 5.0 | 8.6 | 1.7 |
| 2009 | 13 | 4460 | 350 | 4.5 | 11.2 | 2.6 |
| 2010 | 19 | 9214 | 611 | 3.2 | 13.5 | 4.7 |
| 2011 | 17 | 11707 | 908 | 4.1 | 11.4 | 2.9 |
| 2012 | 20 | 18853 | 1184 | 3.8 | 15.0 | 4.1 |
| 2013 | 16 | 16064 | 996 | 3.5 | 15.6 | 4.8 |
| 2014 | 15 | 17202 | 1075 | 3.9 | 15.3 | 3.8 |
| All years | 130 | 289954 | 33918 | 4.6 | 5.0 | 1.0 |

Table A2c: Number of tows, vessels, median tow duration, catch per tow, and catch per hour for all Cook Strait vessels by year. Year defined as June to October. There were no October data available for 2014. Data are non-zero catches for TCEPR midwater tows.

All target species tows:

| Fishing <br> year | Number of <br> vessels | Total <br> catch (t) | Number of <br> tows |
| :--- | ---: | ---: | ---: |
| 1990 | 17 | 11894 | 1048 |
| 1991 | 22 | 21976 | 2069 |
| 1992 | 22 | 19345 | 1642 |
| 1993 | 20 | 16977 | 1499 |
| 1994 | 29 | 25106 | 1810 |
| 1995 | 24 | 24376 | 2162 |
| 1996 | 36 | 41820 | 3087 |
| 1997 | 34 | 43248 | 3592 |
| 1998 | 28 | 30711 | 2373 |
| 1999 | 21 | 28084 | 2037 |
| 2000 | 21 | 27935 | 1989 |
| 2001 | 25 | 23581 | 1842 |
| 2002 | 15 | 17147 | 1068 |
| 2003 | 20 | 26979 | 1816 |
| 2004 | 19 | 27712 | 1793 |
| 2005 | 13 | 18166 | 1344 |
| 2006 | 11 | 16330 | 1015 |
| 2007 | 7 | 12444 | 952 |
| 2008 | 6 | 7558 | 404 |
| 2009 | 8 | 9095 | 740 |
| 2010 | 8 | 10839 | 820 |
| 2011 | 6 | 7346 | 527 |
| 2012 | 9 | 9778 | 759 |
| 2013 | 9 | 11682 | 865 |
| 2014 | 9 | 11162 | 871 |
|  |  |  |  |
| All years | 71 | 501294 | 38124 |

Target hoki tows:

| Fishing year | Number of vessels | $\begin{array}{r} \text { Total } \\ \text { catch }(t) \end{array}$ | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 17 | 11894 | 1048 | 1.2 | 9.1 | 7.4 |
| 1991 | 22 | 21976 | 2069 | 1.5 | 8.2 | 5.0 |
| 1992 | 22 | 19345 | 1642 | 1.2 | 8.3 | 6.5 |
| 1993 | 18 | 16957 | 1493 | 1.0 | 8.3 | 7.0 |
| 1994 | 29 | 25065 | 1804 | 1.0 | 11.8 | 11.9 |
| 1995 | 24 | 24320 | 2158 | 1.0 | 8.3 | 9.9 |
| 1996 | 36 | 41744 | 3076 | 0.8 | 11.2 | 16.7 |
| 1997 | 34 | 43179 | 3585 | 1.0 | 10.6 | 11.2 |
| 1998 | 28 | 30674 | 2371 | 1.0 | 11.4 | 11.7 |
| 1999 | 21 | 28081 | 2036 | 1.0 | 12.7 | 14.8 |
| 2000 | 21 | 27935 | 1989 | 0.7 | 12.0 | 19.3 |
| 2001 | 25 | 23553 | 1839 | 0.8 | 11.0 | 14.0 |
| 2002 | 15 | 17147 | 1068 | 1.0 | 14.9 | 17.2 |
| 2003 | 20 | 26979 | 1814 | 1.0 | 12.6 | 16.3 |
| 2004 | 19 | 27712 | 1791 | 1.0 | 12.2 | 14.2 |
| 2005 | 13 | 18162 | 1343 | 1.0 | 13.0 | 16.9 |
| 2006 | 11 | 16330 | 1014 | 0.8 | 15.1 | 20.5 |
| 2007 | 7 | 12396 | 949 | 1.0 | 10.9 | 13.8 |
| 2008 | 5 | 7555 | 397 | 0.8 | 18.8 | 24.3 |
| 2009 | 8 | 9083 | 739 | 0.6 | 10.1 | 18.2 |
| 2010 | 8 | 10783 | 818 | 0.8 | 11.2 | 14.8 |
| 2011 | 6 | 7346 | 527 | 0.8 | 11.3 | 16.7 |
| 2012 | 9 | 9778 | 759 | 0.9 | 10.7 | 13.7 |
| 2013 | 9 | 11682 | 865 | 0.7 | 11.6 | 17.0 |
| 2014 | 9 | 11162 | 871 | 1.0 | 11.2 | 12.3 |
| All years | 71 | 500839 | 38065 | 1.0 | 10.6 | 12.5 |

A2d: Number of Chatham Rise and ECSI non-zero hoki bottom tows and vessels, total catches, median tow duration, median catch per tow, and median catch per hour by fishing year. Data source is un-groomed bottom non-zero TCEPR tows catching hoki. Chatham Rise data includes data from October to September, and ECSI data includes data from October to May.

## All target species tows:

| Fishing year | Number of vessels | Total catch <br> (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 47 | 13001 | 3297 | 4.0 | 1.5 | 0.5 |
| 1991 | 59 | 18080 | 4787 | 4.0 | 2.0 | 0.5 |
| 1992 | 72 | 43456 | 8169 | 4.0 | 3.1 | 0.8 |
| 1993 | 61 | 39238 | 7523 | 3.9 | 3.4 | 1.0 |
| 1994 | 64 | 18125 | 5305 | 3.5 | 2.1 | 0.7 |
| 1995 | 70 | 30585 | 7914 | 3.8 | 3.0 | 0.9 |
| 1996 | 84 | 37620 | 9294 | 3.6 | 2.9 | 0.9 |
| 1997 | 96 | 42898 | 10330 | 3.7 | 3.2 | 0.9 |
| 1998 | 82 | 55824 | 12479 | 4.0 | 3.3 | 0.9 |
| 1999 | 77 | 61528 | 12620 | 4.0 | 4.1 | 1.0 |
| 2000 | 60 | 44753 | 10746 | 4.1 | 3.0 | 0.8 |
| 2001 | 60 | 46150 | 11429 | 4.5 | 3.0 | 0.7 |
| 2002 | 55 | 36271 | 9491 | 4.5 | 2.9 | 0.7 |
| 2003 | 62 | 37415 | 10912 | 4.7 | 2.5 | 0.5 |
| 2004 | 58 | 31656 | 9131 | 5.0 | 2.3 | 0.5 |
| 2005 | 50 | 28914 | 7048 | 5.0 | 2.8 | 0.6 |
| 2006 | 50 | 34077 | 7145 | 4.8 | 3.5 | 0.8 |
| 2007 | 46 | 37640 | 7267 | 4.6 | 3.5 | 0.8 |
| 2008 | 38 | 37375 | 6890 | 4.8 | 3.6 | 0.8 |
| 2009 | 37 | 38956 | 6186 | 4.3 | 4.6 | 1.1 |
| 2010 | 38 | 38454 | 5833 | 4.5 | 5.3 | 1.2 |
| 2011 | 38 | 38136 | 5286 | 4.7 | 5.9 | 1.2 |
| 2012 | 35 | 38818 | 5428 | 4.8 | 5.7 | 1.3 |
| 2013 | 35 | 35093 | 5181 | 4.8 | 5.6 | 1.2 |
| 2014 | 32 | 32606 | 5170 | 4.8 | 5.0 | 1.1 |
| All years | 199 | 916670 | 194861 | 4.2 | 3.1 | 0.8 |

Target hoki tows:

| Fishing year | Number of vessels | Total catch (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 31 | 11788 | 1902 | 4.0 | 3.8 | 1.0 |
| 1991 | 41 | 16761 | 3285 | 4.0 | 3.5 | 0.9 |
| 1992 | 47 | 42305 | 5408 | 3.8 | 5.7 | 1.6 |
| 1993 | 40 | 38354 | 5169 | 3.5 | 5.7 | 1.6 |
| 1994 | 36 | 17525 | 3372 | 3.2 | 4.2 | 1.3 |
| 1995 | 42 | 30097 | 6485 | 3.5 | 3.9 | 1.1 |
| 1996 | 58 | 37177 | 7969 | 3.5 | 3.2 | 1.0 |
| 1997 | 73 | 42380 | 8988 | 3.5 | 3.7 | 1.1 |
| 1998 | 63 | 55315 | 11159 | 4.0 | 4.2 | 1.0 |
| 1999 | 46 | 60838 | 11244 | 4.0 | 4.4 | 1.1 |
| 2000 | 34 | 44113 | 9413 | 4.1 | 3.7 | 0.9 |
| 2001 | 40 | 44928 | 9762 | 4.5 | 3.5 | 0.8 |
| 2002 | 31 | 35087 | 7773 | 4.4 | 3.4 | 0.8 |
| 2003 | 32 | 36051 | 9196 | 4.8 | 3.0 | 0.6 |
| 2004 | 28 | 30207 | 7142 | 4.9 | 3.0 | 0.6 |
| 2005 | 21 | 27472 | 4973 | 5.0 | 4.1 | 0.8 |
| 2006 | 20 | 32329 | 4997 | 4.8 | 5.0 | 1.0 |
| 2007 | 21 | 34746 | 4733 | 4.5 | 5.8 | 1.2 |
| 2008 | 22 | 33527 | 4187 | 4.8 | 6.6 | 1.4 |
| 2009 | 21 | 33645 | 3896 | 4.2 | 7.3 | 1.7 |
| 2010 | 21 | 35151 | 4349 | 4.6 | 6.9 | 1.5 |
| 2011 | 23 | 34811 | 4056 | 4.8 | 7.2 | 1.5 |
| 2012 | 24 | 37639 | 4380 | 4.8 | 7.2 | 1.6 |
| 2013 | 22 | 33926 | 4160 | 4.8 | 6.7 | 1.4 |
| 2014 | 18 | 31883 | 3958 | 4.9 | 6.6 | 1.4 |
| All years | 164 | 878056 | 151956 | 4.1 | 4.2 | 1.0 |

Table A2e: Number of ECSI non-zero hoki midwater or bottom tows and vessels, total catches, median tow duration, median catch per tow, and median catch per hour by year. Data source is un-groomed midwater or bottom non-zero TCEPR tows catching hoki. Year defined as June to October. There were no October data available for 2014. Data are not shown for MW vessels in 2009 or 2010 as there was only one vessel.

All target species mid-water tows:

| Fishing <br> year | Number of <br> vessels | Total <br> catch (t) | Number of <br> tows |
| :--- | ---: | ---: | ---: |
| 2000 | 7 | 289 | 24 |
| 2001 | 15 | 1264 | 123 |
| 2002 | 10 | 2003 | 145 |
| 2003 | 18 | 4453 | 301 |
| 2004 | 5 | 1438 | 85 |
| 2005 | 6 | 4037 | 221 |
| 2006 | 4 | 485 | 41 |
| 2007 | 4 | 299 | 26 |
| 2008 | 3 | 263 | - |
| 2009 | 1 | 462 | - |
| 2010 | 1 | 28 | 7 |
| 2011 | 4 | 879 | 57 |
| 2012 | 8 | 1686 | 117 |
| 2013 | 10 | 2945 | 191 |
| 2014 | 10 | 2548 | 128 |
|  |  |  |  |
| All years | 34 | 23082 | 1521 |

Target hoki mid-water tows:

| Fishing year | Number of vessels | Total catch (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 7 | 289 | 24 | 2.7 | 7.5 | 2.4 |
| 2001 | 15 | 1264 | 123 | 2.4 | 6.0 | 2.2 |
| 2002 | 10 | 2003 | 145 | 2.2 | 10.9 | 4.2 |
| 2003 | 18 | 4453 | 301 | 2.1 | 13.1 | 5.2 |
| 2004 | 5 | 1438 | 85 | 2.2 | 10.4 | 6.0 |
| 2005 | 6 | 4037 | 221 | 2.0 | 15.0 | 8.4 |
| 2006 | 4 | 485 | 41 | 1.5 | 10.0 | 5.7 |
| 2007 | 4 | 299 | 26 | 1.1 | 8.7 | 8.8 |
| 2008 | 3 | 263 | 28 | 3.0 | 8.1 | 2.7 |
| 2009 | 1 | 462 | - | - | - | - |
| 2010 | 1 | 28 | - | - | - | - |
| 2011 | 4 | 879 | 57 | 1.0 | 14.7 | 10.8 |
| 2012 | 8 | 1686 | 117 | 1.6 | 10.3 | 5.2 |
| 2013 | 10 | 2945 | 191 | 2.0 | 14.2 | 6.6 |
| 2014 | 10 | 2548 | 128 | 2.2 | 17.1 | 8.4 |
| All years | 34 | 22746 | 1501 | 2.0 | 12.4 | 5.6 |

## Table A2e ECSI ctd.

All target bottom tows:

| Fishing <br> year | Number of <br> vessels |
| :--- | ---: |
| 2000 | 10 |
| 2001 | 13 |
| 2002 | 16 |
| 2003 | 16 |
| 2004 | 7 |
| 2005 | 8 |
| 2006 | 7 |
| 2007 | 11 |
| 2008 | 12 |
| 2009 | 8 |
| 2010 | 8 |
| 2011 | 6 |
| 2012 | 9 |
| 2013 | 10 |
| 2014 | 10 |
| All years | 38 |

Target hoki bottom tows:

| Fishing <br> year | Number of <br> vessels |
| :--- | ---: |
| 2000 | 10 |
| 2001 | 13 |
| 2002 | 16 |
| 2003 | 16 |
| 2004 | 7 |
| 2005 | 8 |
| 2006 | 7 |
| 2007 | 11 |
| 2008 | 12 |
| 2009 | 8 |
| 2010 | 8 |
| 2011 | 6 |
| 2012 | 9 |
| 2013 | 10 |
| 2014 | 10 |
| All years |  |
|  | 28 |


| Total <br> catch $(\mathbf{t})$ | Number of <br> tows |
| ---: | ---: |
|  |  |
| 250 | 69 |
| 441 | 85 |
| 828 | 126 |
| 2081 | 255 |
| 250 | 44 |
| 717 | 98 |
| 163 | 31 |
| 666 | 81 |
| 2112 | 215 |
| 635 | 76 |
| 533 | 70 |
| 592 | 56 |
| 753 | 89 |
| 302 | 48 |
| 158 | 41 |
|  |  |
| 10082 | 1292 |

Table A2f: Number of Sub-Antarctic non-zero hoki bottom tows and vessels, total catches, median tow duration, median catch per tow, and median catch per hour for all vessels by fishing year. Data source is un-groomed non-zero TCEPR bottom tows catching hoki.

All target species tows:

| Fishing <br> year | Number of <br> vessels | Total <br> catch (t) | Number of <br> tows |
| :--- | ---: | ---: | ---: |
| 1990 | 36 | 11542 | 2589 |
| 1991 | 43 | 16177 | 4420 |
| 1992 | 58 | 29688 | 6877 |
| 1993 | 39 | 22304 | 5647 |
| 1994 | 45 | 9051 | 3163 |
| 1995 | 42 | 11716 | 3223 |
| 1996 | 46 | 10889 | 3483 |
| 1997 | 58 | 19288 | 4522 |
| 1998 | 49 | 24217 | 5192 |
| 1999 | 49 | 20966 | 4673 |
| 2000 | 43 | 31576 | 7155 |
| 2001 | 46 | 26222 | 6669 |
| 2002 | 47 | 29568 | 8093 |
| 2003 | 44 | 19870 | 5556 |
| 2004 | 41 | 11168 | 3728 |
| 2005 | 40 | 6148 | 2542 |
| 2006 | 34 | 6491 | 2360 |
| 2007 | 31 | 7420 | 2878 |
| 2008 | 29 | 8015 | 2625 |
| 2009 | 25 | 9195 | 2807 |
| 2010 | 29 | 11551 | 3023 |
| 2011 | 28 | 10973 | 2689 |
| 2012 | 28 | 13665 | 2580 |
| 2013 | 29 | 14054 | 2773 |
| 2014 | 22 | 19784 | 3211 |
| Allyears | 165 | 401537 | 102478 |
|  |  |  |  |

Hoki target tows:

| Fishing <br> year | Number of <br> vessels | Total <br> catch (t) | Number of <br> tows |
| :--- | ---: | ---: | ---: |
| 1990 | 20 | 10922 | 2048 |
| 1991 | 30 | 15229 | 3862 |
| 1992 | 33 | 28278 | 5314 |
| 1993 | 24 | 21359 | 4817 |
| 1994 | 22 | 8748 | 1977 |
| 1995 | 25 | 11453 | 2297 |
| 1996 | 25 | 10628 | 2437 |
| 1997 | 42 | 18919 | 3293 |
| 1998 | 34 | 23669 | 4267 |
| 1999 | 33 | 20391 | 3563 |
| 2000 | 30 | 30884 | 5806 |
| 2001 | 31 | 25397 | 5324 |
| 2002 | 33 | 28612 | 6253 |
| 2003 | 33 | 19101 | 4322 |
| 2004 | 26 | 10815 | 2864 |
| 2005 | 25 | 5151 | 1351 |
| 2006 | 16 | 4636 | 720 |
| 2007 | 20 | 5143 | 1136 |
| 2008 | 13 | 5828 | 909 |
| 2009 | 12 | 6883 | 918 |
| 2010 | 12 | 9687 | 1231 |
| 2011 | 15 | 9210 | 1237 |
| 2012 | 17 | 11538 | 1193 |
| 2013 | 16 | 11706 | 1363 |
| 2014 | 13 | 17216 | 1864 |
| All years |  |  |  |
|  |  | 371401 | 70366 |
| 109 |  |  |  |


| Median tow <br> duration (h) | Median catch <br> per tow $(\mathbf{t})$ | Median catch per <br> hour $\mathbf{( t / h})$ |
| ---: | ---: | ---: |
| 4.0 | 2.6 | 0.6 |
| 4.3 | 2.6 | 0.6 |
| 4.2 | 3.1 | 0.8 |
| 4.0 | 3.1 | 0.8 |
| 4.2 | 1.6 | 0.4 |
| 4.3 | 2.2 | 0.6 |
| 4.2 | 1.9 | 0.5 |
| 4.5 | 3.2 | 0.7 |
| 4.3 | 3.3 | 0.8 |
| 4.5 | 2.9 | 0.7 |
| 4.2 | 3.0 | 0.8 |
| 4.5 | 2.7 | 0.6 |
| 4.4 | 2.1 | 0.6 |
| 4.9 | 2.4 | 0.5 |
| 5.0 | 2.0 | 0.4 |
| 5.3 | 1.0 | 0.2 |
| 5.3 | 0.7 | 0.1 |
| 5.2 | 0.8 | 0.2 |
| 5.5 | 1.0 | 0.2 |
| 5.0 | 1.0 | 0.2 |
| 5.4 | 1.0 | 0.2 |
| 5.0 | 1.5 | 0.3 |
| 5.0 | 2.2 | 0.5 |
| 4.8 | 2.6 | 0.5 |
| 5.0 | 3.6 | 0.7 |
| 4.5 | 2.2 |  |


| Median tow <br> duration (h) | Median catch <br> per tow $(\mathbf{t})$ | Median catch per <br> hour $(\mathbf{t} / \mathbf{h})$ |
| ---: | ---: | ---: |
|  |  |  |
| 4.0 | 3.6 | 0.9 |
| 4.4 | 2.8 | 0.6 |
| 4.1 | 4.1 | 1.0 |
| 3.8 | 3.6 | 0.9 |
| 4.0 | 3.2 | 0.9 |
| 4.0 | 3.9 | 1.0 |
| 4.0 | 3.1 | 0.9 |
| 4.2 | 4.6 | 1.1 |
| 4.2 | 4.2 | 1.0 |
| 4.2 | 4.1 | 1.1 |
| 4.0 | 3.9 | 1.0 |
| 4.2 | 3.5 | 0.8 |
| 4.2 | 2.9 | 0.8 |
| 4.8 | 3.0 | 0.7 |
| 4.9 | 3.0 | 0.6 |
| 5.1 | 2.5 | 0.5 |
| 5.0 | 4.0 | 0.8 |
| 4.5 | 2.2 | 0.5 |
| 4.8 | 4.5 | 0.9 |
| 4.4 | 5.1 | 1.2 |
| 4.5 | 6.1 | 1.3 |
| 4.5 | 5.5 | 1.2 |
| 4.6 | 7.6 | 1.6 |
| 4.3 | 6.2 | 1.5 |
| 4.5 | 7.1 | 1.6 |
| 4.2 | 3.8 | 0.9 |

Table A2g: Number of Puysegur non-zero hoki bottom and midwater median tow duration, median catch per tow, and median catch per hour for all vessels by year. Data source is un-groomed midwater or bottom non-zero TCEPR tows catching hoki. Year defined as June to December. There were no October to December data available for 2014. Data have been removed where there is one or two vessels only.

All target species tows:

| Fishing year | Number of vessels | Total catch <br> (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 36 | 11542 | 2589 | 4.0 | 2.6 | 0.6 |
| 1991 | 43 | 16177 | 4420 | 4.3 | 2.6 | 0.6 |
| 1992 | 58 | 29688 | 6877 | 4.2 | 3.1 | 0.8 |
| 1993 | 39 | 22304 | 5647 | 4.0 | 3.1 | 0.8 |
| 1994 | 45 | 9051 | 3163 | 4.2 | 1.6 | 0.4 |
| 1995 | 42 | 11716 | 3223 | 4.3 | 2.2 | 0.6 |
| 1996 | 46 | 10889 | 3483 | 4.2 | 1.9 | 0.5 |
| 1997 | 58 | 19288 | 4522 | 4.5 | 3.2 | 0.7 |
| 1998 | 49 | 24217 | 5192 | 4.3 | 3.3 | 0.8 |
| 1999 | 49 | 20966 | 4673 | 4.5 | 2.9 | 0.7 |
| 2000 | 43 | 31576 | 7155 | 4.2 | 3.0 | 0.8 |
| 2001 | 46 | 26222 | 6669 | 4.5 | 2.7 | 0.6 |
| 2002 | 47 | 29568 | 8093 | 4.4 | 2.1 | 0.6 |
| 2003 | 44 | 19870 | 5556 | 4.9 | 2.4 | 0.5 |
| 2004 | 41 | 11168 | 3728 | 5.0 | 2.0 | 0.4 |
| 2005 | 40 | 6148 | 2542 | 5.3 | 1.0 | 0.2 |
| 2006 | 34 | 6491 | 2360 | 5.3 | 0.7 | 0.1 |
| 2007 | 31 | 7420 | 2878 | 5.2 | 0.8 | 0.2 |
| 2008 | 29 | 8015 | 2625 | 5.5 | 1.0 | 0.2 |
| 2009 | 25 | 9195 | 2807 | 5.0 | 1.0 | 0.2 |
| 2010 | 29 | 11551 | 3023 | 5.4 | 1.0 | 0.2 |
| 2011 | 28 | 10973 | 2689 | 5.0 | 1.5 | 0.3 |
| 2012 | 28 | 13665 | 2580 | 5.0 | 2.2 | 0.5 |
| 2013 | 29 | 14054 | 2773 | 4.8 | 2.6 | 0.5 |
| 2014 | 22 | 19784 | 3211 | 5.0 | 3.6 | 0.7 |
| All years | 165 | 401537 | 102478 | 4.5 | 2.2 | 0.5 |

Hoki target tows:

| Fishing year | Number of vessels | Total catch <br> (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 20 | 10922 | 2048 | 4.0 | 3.6 | 0.9 |
| 1991 | 30 | 15229 | 3862 | 4.4 | 2.8 | 0.6 |
| 1992 | 33 | 28278 | 5314 | 4.1 | 4.1 | 1.0 |
| 1993 | 24 | 21359 | 4817 | 3.8 | 3.6 | 0.9 |
| 1994 | 22 | 8748 | 1977 | 4.0 | 3.2 | 0.9 |
| 1995 | 25 | 11453 | 2297 | 4.0 | 3.9 | 1.0 |
| 1996 | 25 | 10628 | 2437 | 4.0 | 3.1 | 0.9 |
| 1997 | 42 | 18919 | 3293 | 4.2 | 4.6 | 1.1 |
| 1998 | 34 | 23669 | 4267 | 4.2 | 4.2 | 1.0 |
| 1999 | 33 | 20391 | 3563 | 4.2 | 4.1 | 1.1 |
| 2000 | 30 | 30884 | 5806 | 4.0 | 3.9 | 1.0 |
| 2001 | 31 | 25397 | 5324 | 4.2 | 3.5 | 0.8 |
| 2002 | 33 | 28612 | 6253 | 4.2 | 2.9 | 0.8 |
| 2003 | 33 | 19101 | 4322 | 4.8 | 3.0 | 0.7 |
| 2004 | 26 | 10815 | 2864 | 4.9 | 3.0 | 0.6 |
| 2005 | 25 | 5151 | 1351 | 5.1 | 2.5 | 0.5 |
| 2006 | 16 | 4636 | 720 | 5.0 | 4.0 | 0.8 |
| 2007 | 20 | 5143 | 1136 | 4.5 | 2.2 | 0.5 |
| 2008 | 13 | 5828 | 909 | 4.8 | 4.5 | 0.9 |
| 2009 | 12 | 6883 | 918 | 4.4 | 5.1 | 1.2 |
| 2010 | 12 | 9687 | 1231 | 4.5 | 6.1 | 1.3 |
| 2011 | 15 | 9210 | 1237 | 4.5 | 5.5 | 1.2 |
| 2012 | 17 | 11538 | 1193 | 4.6 | 7.6 | 1.6 |
| 2013 | 16 | 11706 | 1363 | 4.3 | 6.2 | 1.5 |
| 2014 | 13 | 17216 | 1864 | 4.5 | 7.1 | 1.6 |
| All years | 109 | 371401 | 70366 | 4.2 | 3.8 | 0.9 |

Table A2g ctd.: Puysegur.

## All target species bottom tows:

| Fishing <br> year | Number of <br> vessels | Total <br> catch (t) | Number of <br> tows |
| :--- | ---: | ---: | ---: |
| 1990 | 15 | 104 | 207 |
| 1991 | 24 | 1663 | 372 |
| 1992 | 30 | 4012 | 842 |
| 1993 | 12 | 1044 | 220 |
| 1994 | 20 | 394 | 175 |
| 1995 | 12 | 252 | 200 |
| 1996 | 16 | 955 | 354 |
| 1997 | 25 | 1162 | 336 |
| 1998 | 19 | 1295 | 252 |
| 1999 | 22 | 966 | 265 |
| 2000 | 20 | 849 | 273 |
| 2001 | 24 | 919 | 221 |
| 2002 | 18 | 1852 | 193 |
| 2003 | 20 | 796 | 181 |
| 2004 | 14 | 198 | 81 |
| 2005 | 21 | 582 | 291 |
| 2006 | 16 | 1002 | 256 |
| 2007 | 13 | 253 | 118 |
| 2008 | 6 | 134 | 56 |
| 2009 | 7 | 126 | 57 |
| 2010 | 7 | 121 | 110 |
| 2011 | 11 | 208 | 108 |
| 2012 | 7 | 163 | 59 |
| 2013 | 9 | 395 | 79 |
| 2014 | 6 | 395 | 64 |
| All years |  |  |  |
|  |  | 19841 | 5370 |
|  | 25 |  |  |

Hoki target bottom tows:

| Fishing year | Number of vessels | Total catch (t) | Number of tows | Median tow duration (h) | Median catch per tow (t) | Median catch per hour (t/h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 8 | 22 | 20 | 3.5 | 0.7 | 0.2 |
| 1991 | 20 | 1541 | 310 | 4.1 | 4.1 | 0.9 |
| 1992 | 26 | 3778 | 701 | 4.2 | 3.1 | 0.8 |
| 1993 | 11 | 1019 | 201 | 4.0 | 4.0 | 0.9 |
| 1994 | 16 | 356 | 138 | 4.4 | 1.1 | 0.3 |
| 1995 | 9 | 217 | 144 | 5.8 | 0.6 | 0.1 |
| 1996 | 16 | 892 | 272 | 4.1 | 1.5 | 0.3 |
| 1997 | 22 | 983 | 295 | 5.3 | 0.9 | 0.2 |
| 1998 | 18 | 1262 | 237 | 4.8 | 3.0 | 0.7 |
| 1999 | 21 | 931 | 238 | 5.1 | 1.2 | 0.2 |
| 2000 | 18 | 817 | 224 | 5.0 | 1.6 | 0.3 |
| 2001 | 22 | 910 | 198 | 4.2 | 2.5 | 0.6 |
| 2002 | 16 | 1836 | 184 | 3.8 | 7.0 | 1.7 |
| 2003 | 14 | 774 | 135 | 4.5 | 3.0 | 0.7 |
| 2004 | 5 | 152 | 24 | 3.3 | 4.2 | 1.2 |
| 2005 | 8 | 240 | 51 | 3.2 | 2.2 | 0.9 |
| 2006 | 6 | 707 | 79 | 3.5 | 6.0 | 2.1 |
| 2007 | 2 | 57 | 14 | 3.8 | 2.1 | 0.5 |
| 2008 | 1 | - | - | - | - | - |
| 2009 | 1 | - | - | - | - | - |
| 2010 | 1 | - | - | - | - | - |
| 2011 | 1 | - | - | - | - | - |
| 2012 | 1 | - | - | - | - | - |
| 2013 | 4 | 221 | 21 | 3.9 | 11.5 | 2.7 |
| 2014 | 3 | 241 | 33 | 3.5 | 4.1 | 1.1 |
| All years | 78 | 17054 | 3532 | 4.3 | 2.5 | 0.6 |

Table A3: CPUE datasets for all vessels and for core (TCEPR) or final (observer) vessels for each year (1990-2014) for main hoki areas. Prop. zeros: proportion of zeros.

WCSI: TCEPR tow-by-tow, target hoki

|  | All vessels |  |  |  |  |  |  |  | Core vessels |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing year | No. vessels | Catch | Effort | Prop. zeros | CPUE | No. vessels | Catch | Effort | Prop. zeros | CPUE |
| 1990 | 76 | 114865.5 | 7424 | 0.04 | 15.47 | 20 | 45703.3 | 2342 | 0.02 | 19.51 |
| 1991 | 73 | 104310.3 | 7709 | 0.04 | 13.53 | 28 | 56589.3 | 2813 | 0.02 | 20.12 |
| 1992 | 66 | 88465.8 | 5787 | 0.06 | 15.29 | 29 | 46377.0 | 2568 | 0.03 | 18.06 |
| 1993 | 60 | 86525.0 | 6448 | 0.06 | 13.42 | 35 | 54625.5 | 3799 | 0.05 | 14.38 |
| 1994 | 66 | 99164.0 | 8162 | 0.09 | 12.15 | 41 | 72321.7 | 5449 | 0.08 | 13.27 |
| 1995 | 62 | 67746.1 | 8241 | 0.10 | 8.22 | 43 | 51623.4 | 6057 | 0.09 | 8.52 |
| 1996 | 61 | 59507.6 | 6536 | 0.07 | 9.10 | 42 | 53129.2 | 5300 | 0.07 | 10.02 |
| 1997 | 76 | 78705.7 | 7654 | 0.07 | 10.28 | 50 | 67412.1 | 6195 | 0.07 | 10.88 |
| 1998 | 68 | 91522.6 | 7680 | 0.04 | 11.92 | 55 | 85700.4 | 7137 | 0.04 | 12.01 |
| 1999 | 59 | 82908.7 | 6711 | 0.03 | 12.35 | 51 | 82530.6 | 6658 | 0.03 | 12.40 |
| 2000 | 51 | 93697.0 | 6999 | 0.02 | 13.39 | 44 | 92875.7 | 6908 | 0.02 | 13.44 |
| 2001 | 63 | 93775.8 | 7972 | 0.02 | 11.76 | 48 | 89975.2 | 7494 | 0.02 | 12.01 |
| 2002 | 56 | 85316.3 | 7277 | 0.02 | 11.72 | 47 | 82110.1 | 6963 | 0.02 | 11.79 |
| 2003 | 51 | 68096.1 | 6958 | 0.02 | 9.79 | 45 | 67823.0 | 6901 | 0.02 | 9.83 |
| 2004 | 51 | 39675.1 | 5922 | 0.02 | 6.70 | 41 | 35211.4 | 5408 | 0.02 | 6.51 |
| 2005 | 37 | 29243.2 | 3491 | 0.02 | 8.38 | 36 | 28714.9 | 3439 | 0.02 | 8.35 |
| 2006 | 36 | 33620.2 | 3113 | 0.01 | 10.80 | 31 | 32916.3 | 3018 | 0.01 | 10.91 |
| 2007 | 32 | 29194.3 | 1818 | 0.01 | 16.06 | 28 | 28401.8 | 1776 | 0.01 | 15.99 |
| 2008 | 22 | 16956.9 | 1277 | 0.01 | 13.28 | 15 | 16126.4 | 1213 | 0.01 | 13.29 |
| 2009 | 20 | 16786.1 | 1030 | 0.01 | 16.30 | 13 | 15785.3 | 966 | 0.01 | 16.34 |
| 2010 | 27 | 31982.6 | 1774 | 0.01 | 18.03 | 24 | 31674.0 | 1760 | 0.01 | 18 |
| 2011 | 27 | 41002.0 | 2390 | 0.01 | 17.16 | 24 | 40564.6 | 2356 | 0.01 | 17.22 |
| 2012 | 30 | 48759.8 | 2731 | 0.01 | 17.85 | 29 | 48701.2 | 2723 | 0.01 | 17.89 |
| 2013 | 26 | 49496.3 | 2770 | 0.01 | 17.87 | 23 | 49026.9 | 2741 | 0.01 | 17.89 |
| 2014 | 26 | 60566.4 | 3343 | 0.00 | 18.12 | 23 | 55697.9 | 3116 | 0.00 | 17.87 |

WCSI: Observer catch for target hoki

|  | All vessels |  |  |  |  | Final vessels |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing year |  | Catch | Effort | Prop. zeros | CPUE | No. vessels | Catch | Effort | Prop. zeros | CPUE |
| 1990 | 14 | 47607.1 | 1512 | 0.02 | 31.49 | 5 | 9290.8 | 482 | 0.02 | 19.28 |
| 1991 | 14 | 28132.4 | 1228 | 0.02 | 22.91 | 5 | 11583.2 | 493 | 0.02 | 23.50 |
| 1992 | 10 | 18562.5 | 754 | 0.03 | 24.62 | 6 | 6486.6 | 252 | 0.01 | 25.74 |
| 1993 | 15 | 17298.0 | 1020 | 0.02 | 16.96 | 12 | 8401.6 | 694 | 0.01 | 12.11 |
| 1994 | 15 | 32398.4 | 1549 | 0.02 | 20.92 | 11 | 16566.4 | 985 | 0.01 | 16.82 |
| 1995 | 9 | 25689.7 | 797 | 0.01 | 32.23 | 6 | 6411.4 | 401 | 0.01 | 15.99 |
| 1996 | 15 | 17676.5 | 1030 | 0.03 | 17.16 | 10 | 9999.4 | 768 | 0.02 | 13.02 |
| 1997 | 12 | 14180.4 | 674 | 0.02 | 21.04 | 11 | 9651.2 | 601 | 0.02 | 16.06 |
| 1998 | 16 | 18622.0 | 896 | 0.01 | 20.78 | 14 | 13560.6 | 803 | 0.01 | 16.89 |
| 1999 | 14 | 17313.0 | 1073 | 0.02 | 16.14 | 14 | 14234.6 | 1050 | 0.02 | 13.56 |
| 2000 | 17 | 18525.3 | 1154 | 0.00 | 16.05 | 16 | 17662.3 | 1141 | 0.00 | 15.48 |
| 2001 | 21 | 15344.9 | 1007 | 0.01 | 15.24 | 21 | 14648.9 | 998 | 0.01 | 14.68 |
| 2002 | 16 | 16461.8 | 1303 | 0.01 | 12.63 | 15 | 16090.9 | 1275 | 0.01 | 12.62 |
| 2003 | 13 | 10106.2 | 912 | 0.01 | 11.08 | 13 | 10094.2 | 909 | 0.01 | 11.10 |
| 2004 | 16 | 8397.7 | 1299 | 0.01 | 6.46 | 14 | 7564.0 | 1186 | 0.01 | 6.38 |
| 2005 | 13 | 7178.2 | 974 | 0.00 | 7.37 | 12 | 7125.9 | 961 | 0.00 | 7.42 |
| 2006 | 13 | 9522.3 | 780 | 0.00 | 12.21 | 13 | 9519.6 | 778 | 0.00 | 12.24 |
| 2007 | 16 | 9782.3 | 514 | 0.00 | 19.03 | 16 | 9284.9 | 461 | 0.00 | 20.14 |
| 2008 | 11 | 7054.5 | 426 | 0.00 | 16.56 | 11 | 7020.8 | 422 | 0.00 | 16.64 |
| 2009 | 12 | 7325.8 | 367 | 0.00 | 19.96 | 11 | 7121.5 | 346 | 0.00 | 20.58 |
| 2010 | 14 | 9163.6 | 543 | 0.02 | 16.88 | 13 | 8102.0 | 468 | 0.02 | 17.31 |
| 2011 | 11 | 9122.6 | 536 | 0.01 | 17.02 | 11 | 8637.5 | 492 | 0.01 | 17.56 |
| 2012 | 15 | 16707.3 | 881 | 0.01 | 18.96 | 13 | 14579.3 | 757 | 0.01 | 19.26 |
| 2013 | 17 | 30077.1 | 1669 | 0.00 | 18.02 | 17 | 29295.6 | 1613 | 0.00 | 18.16 |
| 2014 | 17 | 28194.2 | 1557 | 0.01 | 18.11 | 15 | 26204.6 | 1436 | 0.01 | 18.25 |

Table A3 ctd.

Cook Strait: TCEPR MW tow-by-tow, target hoki

|  |  |  | All vessels |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| Fishing <br> year | No. <br> vessels | Catch | Effort | Prop. <br> zeros |  |  |
| CPUE |  |  |  |  |  |  |
| 1990 | 17 | 11751.7 | 1040 | 0.03 | 11.30 |  |
| 1991 | 22 | 21708.2 | 2040 | 0.02 | 10.64 |  |
| 1992 | 22 | 17839.8 | 1567 | 0.03 | 11.38 |  |
| 1993 | 18 | 16317.6 | 1430 | 0.04 | 11.41 |  |
| 1994 | 28 | 23871.0 | 1722 | 0.04 | 13.86 |  |
| 1995 | 24 | 21556.8 | 1922 | 0.02 | 11.22 |  |
| 1996 | 36 | 34736.3 | 2587 | 0.03 | 13.43 |  |
| 1997 | 34 | 37320.1 | 3036 | 0.04 | 12.29 |  |
| 1998 | 28 | 26455.7 | 2034 | 0.03 | 13.01 |  |
| 1999 | 20 | 25 | 780.9 | 1821 | 0.02 |  |
| 14.16 |  |  |  |  |  |  |
| 200 | 21 | 22193.8 | 1584 | 0.02 | 14.01 |  |
| 2001 | 25 | 20249.3 | 1593 | 0.03 | 12.71 |  |
| 2002 | 15 | 15274.8 | 917 | 0.01 | 16.66 |  |
| 2003 | 19 | 22949.7 | 1532 | 0.03 | 14.98 |  |
| 2004 | 19 | 25280.6 | 1626 | 0.01 | 15.55 |  |
| 2005 | 12 | 15 | 571.9 | 1141 | 0.01 |  |
| 13.65 |  |  |  |  |  |  |
| 2006 | 11 | 13928.3 | 883 | 0.01 | 15.77 |  |
| 2007 | 7 | 10773.4 | 843 | 0.01 | 12.78 |  |
| 2008 | 5 | 6239.5 | 324 | 0.01 | 19.26 |  |
| 2009 | 8 | 6856.9 | 589 | 0.01 | 11.64 |  |
| 2010 | 8 | 9423.8 | 729 | 0.01 | 12.93 |  |
| 2011 | 6 | 6202.5 | 453 | 0.01 | 13.69 |  |
| 2012 | 9 | 8854.8 | 698 | 0.01 | 12.69 |  |
| 2013 | 9 | 9020.4 | 712 | 0.00 | 12.67 |  |
| 2014 | 9 | 9361.0 | 780 | 0.01 | 12 |  |


|  |  |  | Final vessels |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { No. } \\ \text { vessels } \end{array}$ | Catch | Effort | Prop. zeros | CPUE |
| 11 | 8595.4 | 772 | 0.03 | 11.13 |
| 17 | 19123.3 | 1793 | 0.02 | 10.67 |
| 16 | 15069.1 | 1307 | 0.03 | 11.53 |
| 14 | 15547.5 | 1336 | 0.04 | 11.64 |
| 15 | 19143.1 | 1308 | 0.03 | 14.64 |
| 17 | 18117.2 | 1353 | 0.02 | 13.39 |
| 22 | 27531.7 | 1927 | 0.03 | 14.29 |
| 22 | 29626.0 | 2413 | 0.03 | 12.28 |
| 19 | 23767.8 | 1815 | 0.02 | 13.10 |
| 19 | 25529.3 | 1809 | 0.02 | 14.11 |
| 19 | 21895.7 | 1553 | 0.02 | 14.10 |
| 20 | 19232.3 | 1504 | 0.02 | 12.79 |
| 9 | 13892.6 | 822 | 0.01 | 16.90 |
| 12 | 21651.6 | 1408 | 0.03 | 15.38 |
| 14 | 23476.4 | 1533 | 0.01 | 15.31 |
| 9 | 14981.2 | 1104 | 0.01 | 13.57 |
| 9 | 13709.5 | 865 | 0.01 | 15.85 |
| 6 | 10611.5 | 832 | 0.01 | 12.75 |
| 3 | 6147.6 | 315 | 0.01 | 19.52 |
| 6 | 6491.2 | 555 | 0.01 | 11.70 |
| 5 | 9301.3 | 719 | 0.01 | 12.94 |
| 5 | 6184.9 | 450 | 0.01 | 13.74 |
| 6 | 8686.9 | 686 | 0.01 | 12.66 |
| 5 | 8799.3 | 679 | 0.00 | 12.96 |
| 8 | 8971.2 | 750 | 0.01 | 11.96 |

CSTR: Observer catch for target hoki

|  |  |  | All vessels |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Fishing <br> year | No. <br> vessels | Catch | Effort | Prop. <br> zeros | CPUE |
| 1998 | 11 | 3355.4 | 197 | 0.05 | 17.03 |
| 1999 | 10 | 3458.1 | 212 | 0.01 | 16.31 |
| 2000 | 7 | 3016.9 | 151 | 0.01 | 19.98 |
| 2001 | 9 | 4020.5 | 228 | 0.01 | 17.63 |
| 2002 | 9 | 1989.8 | 135 | 0.04 | 14.74 |
| 2003 | 5 | 2415.9 | 131 | 0.02 | 18.44 |
| 2004 | 7 | 2482.5 | 126 | 0.03 | 19.70 |
| 2005 | 9 | 2151.2 | 122 | 0.00 | 17.63 |
| 2006 | 5 | 1079.8 | 65 | 0.00 | 16.61 |
| 2007 | 7 | 2013.0 | 164 | 0.02 | 12.27 |
| 2008 | 6 | 3409.2 | 198 | 0.02 | 17.22 |
| 2009 | 4 | 1956.4 | 149 | 0.03 | 13.13 |
| 2010 | 9 | 3181.6 | 229 | 0.01 | 13.89 |
| 2011 | 5 | 1588.3 | 86 | 0.00 | 18.47 |
| 2012 | 7 | 1516.1 | 141 | 0.03 | 10.75 |
| 2013 | 4 | 955.6 | 85 | 0.00 | 11.24 |
| 2014 | 4 | 2288.5 | 187 | 0.01 | 12.24 |


|  |  | Final vessels |  |  |
| ---: | ---: | ---: | ---: | ---: |
| No. <br> vessels | Catch | Effort | Prop. <br> zeros | CPUE |
| 9 | 2429.5 | 141 | 0.03 | 17.23 |
| 8 | 2518.0 | 152 | 0.01 | 16.57 |
| 7 | 2236.5 | 111 | 0.00 | 20.15 |
| 6 | 2350.2 | 143 | 0.00 | 16.43 |
| 5 | 1052.5 | 75 | 0.00 | 14.03 |
| 4 | 1368.4 | 81 | 0.00 | 16.89 |
| 6 | 1726.0 | 90 | 0.02 | 19.18 |
| 4 | 1384.3 | 65 | 0.00 | 21.30 |
| 4 | 831.3 | 47 | 0.00 | 17.69 |
| 7 | 1553.3 | 133 | 0.01 | 11.68 |
| 5 | 2611.1 | 145 | 0.01 | 18.01 |
| 4 | 1409.5 | 108 | 0.00 | 13.05 |
| 7 | 2378.2 | 183 | 0.01 | 13 |
| 5 | 1281.8 | 70 | 0.00 | 18.31 |
| 7 | 1298.1 | 122 | 0.04 | 10.64 |
| 4 | 827.3 | 74 | 0.00 | 11.18 |
| 4 | 1984.7 | 175 | 0.01 | 11.34 |

Table A3 ctd.

Chatham Rise: TCEPR tow-by-tow, target hoki

|  |  |  |  | All vessels |  |  |
| :--- | ---: | ---: | ---: | :---: | :---: | :---: |
| Fishing <br> year | No. <br> vessels | Catch | Effort | Prop. <br> zeros | CPUE |  |
|  |  |  |  |  |  |  |
| 1992 | 39 | 31885.7 | 4408 | 0.02 | 7.23 |  |
| 1993 | 37 | 27904.8 | 4054 | 0.01 | 6.88 |  |
| 1994 | 29 | 13998.7 | 2872 | 0.02 | 4.87 |  |
| 1995 | 35 | 20268.9 | 4404 | 0.03 | 4.60 |  |
| 1996 | 45 | 28473.7 | 6104 | 0.03 | 4.66 |  |
| 1997 | 63 | 34656.4 | 7253 | 0.03 | 4.78 |  |
| 1998 | 61 | 43226.4 | 8731 | 0.02 | 4.95 |  |
| 1999 | 44 | 54455.4 | 9735 | 0.01 | 5.59 |  |
| 2000 | 33 | 38013.7 | 8126 | 0.01 | 4.68 |  |
| 2001 | 38 | 37590.9 | 8361 | 0.01 | 4.50 |  |
| 2002 | 29 | 28745.8 | 6584 | 0.01 | 4.37 |  |
| 2003 | 29 | 28990.5 | 7699 | 0.01 | 3.77 |  |
| 2004 | 27 | 19357.0 | 5280 | 0.01 | 3.67 |  |
| 2005 | 23 | 21196.3 | 3982 | 0.01 | 5.32 |  |
| 2006 | 17 | 26831.9 | 4217 | 0.00 | 6.36 |  |
| 2007 | 17 | 27518.0 | 3805 | 0.01 | 7.23 |  |
| 2008 | 22 | 25856.1 | 3252 | 0.00 | 7.95 |  |
| 2009 | 19 | 27248.2 | 3195 | 0.00 | 8.53 |  |
| 2010 | 20 | 29668.8 | 3718 | 0.00 | 7.98 |  |
| 2011 | 21 | 30551.1 | 3619 | 0.00 | 8.44 |  |
| 2012 | 24 | 31571.8 | 3699 | 0.00 | 8.54 |  |
| 2013 | 20 | 28413.9 | 3619 | 0.00 | 7.85 |  |
| 2014 | 17 | 28513.9 | 3487 | 0.00 | 8.18 |  |


|  |  |  | Final vessels |  |
| :---: | :---: | :---: | :---: | :---: |
| vessels | Catch | Effort | Prop. zeros | CPUE |
| 4 | 6544.3 | 1028 | 0.01 | 6.37 |
| 3 | 9829.4 | 1842 | 0.01 | 5.34 |
| 4 | 9022.5 | 1874 | 0.01 | 4.81 |
| 8 | 15174.6 | 3272 | 0.02 | 4.64 |
| 9 | 23465.7 | 4081 | 0.02 | 5.75 |
| 10 | 27635.0 | 4773 | 0.02 | 5.79 |
| 16 | 40579.7 | 7614 | 0.02 | 5.33 |
| 15 | 53190.8 | 9216 | 0.01 | 5.77 |
| 15 | 37579.1 | 7873 | 0.01 | 4.77 |
| 15 | 35758.1 | 7849 | 0.01 | 4.56 |
| 14 | 27412.3 | 6134 | 0.00 | 4.47 |
| 15 | 26922.9 | 7081 | 0.01 | 3.80 |
| 12 | 18161.4 | 4887 | 0.01 | 3.72 |
| 10 | 20061.3 | 3621 | 0.01 | 5.54 |
| 11 | 25218.4 | 3904 | 0.00 | 6.46 |
| 9 | 25735.8 | 3508 | 0.01 | 7.34 |
| 8 | 23421.4 | 2866 | 0.00 | 8.17 |
| 7 | 23632.9 | 2714 | 0.00 | 8.71 |
| 8 | 27726.2 | 3428 | 0.00 | 8.09 |
| 8 | 27263.6 | 3208 | 0.00 | 8.50 |
| 8 | 28685.5 | 3238 | 0.00 | 8.86 |
| 7 | 25936.5 | 3238 | 0.00 | 8.01 |
| 8 | 27030.5 | 3104 | 0.00 | 8.71 |

## Chatham Rise: Observer catch for target hoki

|  |  |  | All vessels |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| Fishing <br> year | No. <br> vessels | Catch | Effort | No. <br> zeros | CPUE |  |
|  |  |  |  |  |  |  |
| 1994 | 5 | 2915.8 | 568 | 0.01 | 5.13 |  |
| 1995 | 3 | 1098.9 | 268 | 0.01 | 4.10 |  |
| 1996 | 4 | 1560.7 | 274 | 0.01 | 5.70 |  |
| 1997 | 6 | 756.3 | 186 | 0.01 | 4.07 |  |
| 1998 | 13 | 4334.7 | 864 | 0.01 | 5.02 |  |
| 1999 | 12 | 7291.4 | 1125 | 0.01 | 6.48 |  |
| 2000 | 16 | 2948.8 | 536 | 0.60 | 5.50 |  |
| 2001 | 13 | 3135.0 | 765 | 0.09 | 4.10 |  |
| 2002 | 10 | 4224.9 | 921 | 0.00 | 4.59 |  |
| 2003 | 9 | 1677.1 | 615 | 0.00 | 2.73 |  |
| 2004 | 6 | 1306.8 | 298 | 0.07 | 4.39 |  |
| 2005 | 7 | 3902.6 | 629 | 0.00 | 6.20 |  |
| 2006 | 8 | 3393.3 | 461 | 0.00 | 7.36 |  |
| 2007 | 8 | 5121.8 | 736 | 0.00 | 6.96 |  |
| 2008 | 7 | 4832.6 | 642 | 0.00 | 7.53 |  |
| 2009 | 10 | 3548.5 | 449 | 0.02 | 7.90 |  |
| 2010 | 9 | 5379.0 | 577 | 0.00 | 9.32 |  |
| 2011 | 10 | 5497.9 | 668 | 0.01 | 8.23 |  |
| 2012 | 8 | 6622.9 | 791 | 0.01 | 8.37 |  |
| 2013 | 15 | 8889.0 | 1295 | 0.01 | 6.86 |  |
| 2014 | 11 | 8657.4 | 1096 | 0.01 | 7.90 |  |


|  |  |  | Final vessels |  |
| ---: | ---: | ---: | ---: | ---: |
| No. <br> vessels | Catch | Effort | No. <br> zeros | CPUE |
| 2 | 1246.8 | 252 | 0.00 | 4.95 |
| 2 | 1095.9 | 264 | 0.01 | 4.15 |
| 2 | 1376.0 | 225 | 0.00 | 6.12 |
| 2 | 278.3 | 78 | 0.03 | 3.57 |
| 12 | 4248.8 | 837 | 0.01 | 5.08 |
| 12 | 7258.6 | 1118 | 0.01 | 6.49 |
| 6 | 2934.6 | 522 | 0.02 | 5.62 |
| 11 | 3104.7 | 752 | 0.09 | 4.13 |
| 9 | 4224.0 | 919 | 0.00 | 4.60 |
| 8 | 1676.6 | 613 | 0.00 | 2.74 |
| 4 | 1298.7 | 289 | 0.01 | 4.49 |
| 5 | 3839.8 | 614 | 0.00 | 6.25 |
| 7 | 3381.9 | 452 | 0.00 | 7.48 |
| 6 | 5081.9 | 730 | 0.00 | 6.96 |
| 7 | 4662.4 | 600 | 0.00 | 7.77 |
| 8 | 3306.9 | 392 | 0.02 | 8.44 |
| 9 | 2804.5 | 344 | 0.01 | 8.15 |
| 8 | 4275.6 | 514 | 0.00 | 8.32 |
| 6 | 5234.2 | 649 | 0.01 | 8.07 |
| 11 | 7382.0 | 1083 | 0.01 | 6.82 |
| 9 | 7513.4 | 939 | 0.01 | 8 |

## Table A3 ctd.

Sub-Antarctic: TCEPR tow-by-tow, target hoki

|  |  |  | All vessels |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| Fishing <br> year | No. <br> vessels | Catch Effort | Prop. <br> zeros |  |  |  |
| CPUE |  |  |  |  |  |  |
| 1992 | 25 | 21855.6 | 4085 | 0.02 | 5.35 |  |
| 1993 | 23 | 18731.0 | 4187 | 0.02 | 4.47 |  |
| 1994 | 15 | 6974.4 | 1481 | 0.02 | 4.71 |  |
| 1995 | 24 | 10308.1 | 2012 | 0.03 | 5.12 |  |
| 1996 | 22 | 9155.4 | 2039 | 0.06 | 4.49 |  |
| 1997 | 37 | 12362.3 | 2173 | 0.03 | 5.69 |  |
| 1998 | 35 | 18571.1 | 3391 | 0.02 | 5.48 |  |
| 1999 | 30 | 15982.1 | 2775 | 0.02 | 5.76 |  |
| 2000 | 26 | 23440.4 | 4821 | 0.02 | 4.86 |  |
| 2001 | 31 | 17463.0 | 4033 | 0.02 | 4.33 |  |
| 2002 | 32 | 20901.3 | 5021 | 0.03 | 4.16 |  |
| 2003 | 29 | 15929.1 | 3727 | 0.02 | 4.27 |  |
| 2004 | 23 | 8302.4 | 2393 | 0.06 | 3.47 |  |
| 2005 | 25 | 4524.9 | 1216 | 0.06 | 3.72 |  |
| 2006 | 15 | 3336.7 | 525 | 0.03 | 6.36 |  |
| 2007 | 20 | 3431.3 | 802 | 0.05 | 4.28 |  |
| 2008 | 13 | 4742.6 | 751 | 0.01 | 6.32 |  |
| 2009 | 12 | 5696.0 | 743 | 0.01 | 7.67 |  |
| 2010 | 12 | 7912.1 | 961 | 0.02 | 8.23 |  |
| 2011 | 15 | 8032.7 | 1112 | 0.01 | 7.22 |  |
| 2012 | 17 | 10275.7 | 1032 | 0.00 | 9.96 |  |
| 2013 | 16 | 9798.3 | 1134 | 0.01 | 8.64 |  |
| 2014 | 13 | 15054.9 | 1564 | 0.00 | 9.63 |  |


| No. <br> vessels | Catch | Effort | Core vessels <br> Prop. <br> zeros |  |
| ---: | ---: | ---: | ---: | ---: |
|  | CPUE |  |  |  |

Sub-Antarctic: Observer catch for target hoki

|  |  |  | All vessels |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Fishing <br> year | No. <br> vessels | Catch | Effort | Prop. <br> zeros | CPUE |
| 1998 |  |  |  |  |  |
| 1999 | 6 | 1304.4 | 219 | 0.00 | 5.96 |
| 2000 | 4 | 546.2 | 686 | 0.02 | 6.63 |
| 2001 | 8 | 3374.0 | 809 | 0.01 | 4.17 |
| 2002 | 13 | 1546.4 | 355 | 0.01 | 4.36 |
| 2003 | 7 | 3035.5 | 628 | 0.00 | 4.83 |
| 2004 | 9 | 1311.6 | 349 | 0.01 | 3.76 |
| 2005 | 7 | 443.4 | 156 | 0.17 | 2.84 |
| 2006 | 3 | 354.0 | 88 | 0.03 | 4.02 |
| 2007 | 4 | 797.2 | 92 | 0.00 | 8.67 |
| 2008 | 6 | 875.2 | 154 | 0.00 | 5.68 |
| 2009 | 5 | 1898.6 | 317 | 0.01 | 5.99 |
| 2010 | 4 | 2644.1 | 364 | 0.01 | 7.26 |
| 2011 | 6 | 2311.8 | 280 | 0.07 | 8.26 |
| 2012 | 8 | 2006.8 | 274 | 0.02 | 7.32 |
| 2013 | 5 | 1631.3 | 192 | 0.00 | 8.50 |
| 2014 | 14 | 4264.5 | 587 | 0.01 | 7.26 |
|  | 12 | 4257.2 | 539 | 0.01 | 7.90 |


|  |  |  | Final vessels |  |
| ---: | ---: | ---: | ---: | ---: |
| No. <br> vessels | Catch | Effort | Prop. <br> zeros | CPUE |
| 4 | 1246.6 | 201 | 0.00 | 6.20 |
| 7 | 4436.0 | 658 | 0.01 | 6.74 |
| 7 | 3370.9 | 803 | 0.01 | 4.20 |
| 5 | 1402.5 | 298 | 0.00 | 4.71 |
| 5 | 2998.5 | 616 | 0.00 | 4.87 |
| 6 | 1307.0 | 344 | 0.01 | 3.80 |
| 3 | 413.7 | 144 | 0.15 | 2.87 |
| 3 | 354.0 | 88 | 0.03 | 4.02 |
| 3 | 762.1 | 80 | 0.00 | 9.53 |
| 4 | 849.6 | 152 | 0.00 | 5.59 |
| 3 | 1612.9 | 213 | 0.00 | 7.57 |
| 3 | 2621.6 | 360 | 0.01 | 7.28 |
| 4 | 2023.8 | 238 | 0.03 | 8.50 |
| 3 | 1466.5 | 197 | 0.02 | 7.44 |
| 3 | 1154.5 | 136 | 0.00 | 8.49 |
| 7 | 3813.4 | 517 | 0.00 | 7.38 |
| 5 | 3256.1 | 374 | 0.00 | 8.71 |

Table A4: Lognormal CPUE standardised indices, and binomial, and combined CPUE indices (with 95\% confidence intervals).

WCSI: TCEPR tow-by-tow, target hoki

| Year | Index | CI |
| ---: | ---: | ---: |
|  |  |  |
| 1990 | 1.12 | $1.07-1.18$ |
| 1991 | 1.20 | $1.15-1.25$ |
| 1992 | 1.19 | $1.14-1.24$ |
| 1993 | 1.03 | $1.00-1.07$ |
| 1994 | 0.98 | $0.95-1.01$ |
| 1995 | 0.63 | $0.61-0.65$ |
| 1996 | 0.74 | $0.72-0.76$ |
| 1997 | 0.76 | $0.74-0.78$ |
| 1998 | 0.93 | $0.90-0.95$ |
| 1999 | 0.97 | $0.94-0.99$ |
| 2000 | 1.09 | $1.07-1.12$ |
| 2001 | 0.80 | $0.78-0.82$ |
| 2002 | 0.78 | $0.76-0.80$ |
| 2003 | 0.61 | $0.60-0.63$ |
| 2004 | 0.39 | $0.38-0.40$ |
| 2005 | 0.48 | $0.46-0.49$ |
| 2006 | 0.71 | $0.69-0.74$ |
| 2007 | 1.21 | $1.15-1.26$ |
| 2008 | 1.17 | $1.11-1.24$ |
| 2009 | 1.61 | $1.51-1.72$ |
| 2010 | 1.56 | $1.48-1.63$ |
| 2011 | 1.55 | $1.49-1.61$ |
| 2012 | 1.81 | $1.74-1.89$ |
| 2013 | 2.00 | $1.93-2.08$ |
| 2014 | 1.76 | $1.70-1.83$ |

Cook Strait: TCEPR MW tow-by-tow, target hoki

| Year | Index | CI |
| :--- | ---: | ---: |
|  |  |  |
| 1990 | 1.18 | $1.09-1.27$ |
| 1991 | 0.99 | $0.93-1.04$ |
| 1992 | 1.12 | $1.05-1.19$ |
| 1993 | 1.02 | $0.96-1.09$ |
| 1994 | 1.25 | $1.18-1.33$ |
| 1995 | 1.25 | $1.18-1.33$ |
| 1996 | 1.10 | $1.05-1.16$ |
| 1997 | 0.95 | $0.91-0.99$ |
| 1998 | 1.02 | $0.97-1.07$ |
| 1999 | 1.00 | $0.95-1.05$ |
| 2000 | 1.00 | $0.95-1.06$ |
| 2001 | 0.83 | $0.79-0.87$ |
| 2002 | 1.25 | $1.17-1.34$ |
| 2003 | 1.01 | $0.95-1.06$ |
| 2004 | 0.92 | $0.87-0.96$ |
| 2005 | 0.85 | $0.80-0.90$ |
| 2006 | 1.00 | $0.94-1.07$ |
| 2007 | 0.77 | $0.72-0.83$ |
| 2008 | 1.17 | $1.04-1.30$ |
| 2009 | 0.77 | $0.71-0.84$ |
| 2010 | 0.97 | $0.90-1.04$ |
| 2011 | 1.16 | $1.06-1.28$ |
| 2012 | 0.84 | $0.77-0.90$ |
| 2013 | 0.95 | $0.88-1.03$ |
| 2014 | 0.88 | $0.82-0.95$ |

WCSI: Observer catch, target hoki

| Year | Index | CI |
| ---: | ---: | ---: |
|  |  |  |
| 1990 | 1.03 | $0.89-1.19$ |
| 1991 | 1.07 | $0.95-1.20$ |
| 1992 | 1.18 | $1.01-1.39$ |
| 1993 | 0.96 | $0.86-1.07$ |
| 1994 | 1.00 | $0.92-1.08$ |
| 1995 | 0.73 | $0.64-0.82$ |
| 1996 | 0.75 | $0.68-0.82$ |
| 1997 | 0.85 | $0.77-0.94$ |
| 1998 | 0.96 | $0.89-1.04$ |
| 1999 | 0.84 | $0.78-0.91$ |
| 2000 | 1.10 | $1.03-1.18$ |
| 2001 | 0.73 | $0.68-0.79$ |
| 2002 | 0.84 | $0.79-0.90$ |
| 2003 | 0.50 | $0.47-0.55$ |
| 2004 | 0.31 | $0.29-0.33$ |
| 2005 | 0.46 | $0.43-0.49$ |
| 2006 | 0.80 | $0.74-0.87$ |
| 2007 | 1.37 | $1.25-1.51$ |
| 2008 | 1.14 | $1.03-1.26$ |
| 2009 | 1.69 | $1.51-1.88$ |
| 2010 | 1.47 | $1.33-1.62$ |
| 2011 | 1.81 | $1.65-2.00$ |
| 2012 | 1.97 | $1.82-2.14$ |
| 2013 | 2.06 | $1.94-2.19$ |
| 2014 | 1.88 | $1.77-2.00$ |

## Cook Strait: Observer catch, target hoki

| Year | Index | CI |
| ---: | ---: | ---: |
|  |  |  |
| 1998 | 0.99 | $0.81-1.20$ |
| 1999 | 1.06 | $0.88-1.28$ |
| 2000 | 1.01 | $0.82-1.26$ |
| 2001 | 0.83 | $0.67-1.02$ |
| 2002 | 0.78 | $0.60-1.01$ |
| 2003 | 0.68 | $0.51-0.90$ |
| 2004 | 1.28 | $1.02-1.60$ |
| 2005 | 1.59 | $1.22-2.08$ |
| 2006 | 1.21 | $0.90-1.63$ |
| 2007 | 0.63 | $0.52-0.76$ |
| 2008 | 1.17 | $0.97-1.40$ |
| 2009 | 0.72 | $0.58-0.90$ |
| 2010 | 0.99 | $0.83-1.19$ |
| 2011 | 1.40 | $1.10-1.80$ |
| 2012 | 0.93 | $0.76-1.15$ |
| 2013 | 1.08 | $0.84-1.39$ |
| 2014 | 1.17 | $0.97-1.41$ |

Table A4: ctd.
Chatham Rise: TCEPR tow-by-tow, target hoki Chatham Rise: Observer catch, target hoki

| Year | Index | CI |
| :--- | ---: | ---: |
|  |  |  |
| 1992 | 1.10 | $1.03-1.17$ |
| 1993 | 1.03 | $0.99-1.09$ |
| 1994 | 1.00 | $0.96-1.05$ |
| 1995 | 0.87 | $0.84-0.90$ |
| 1996 | 1.05 | $1.01-1.08$ |
| 1997 | 0.96 | $0.93-0.99$ |
| 1998 | 0.88 | $0.86-0.91$ |
| 1999 | 1.00 | $0.98-1.03$ |
| 2000 | 0.80 | $0.79-0.82$ |
| 2001 | 0.76 | $0.74-0.78$ |
| 2002 | 0.75 | $0.74-0.78$ |
| 2003 | 0.58 | $0.57-0.59$ |
| 2004 | 0.55 | $0.53-0.57$ |
| 2005 | 0.78 | $0.76-0.81$ |
| 2006 | 1.03 | $0.99-1.06$ |
| 2007 | 1.06 | $1.03-1.10$ |
| 2008 | 1.31 | $1.26-1.36$ |
| 2009 | 1.46 | $1.40-1.51$ |
| 2010 | 1.27 | $1.23-1.31$ |
| 2011 | 1.35 | $1.30-1.40$ |
| 2012 | 1.45 | $1.40-1.51$ |
| 2013 | 1.32 | $1.28-1.37$ |
| 2014 | 1.43 | $1.38-1.48$ |


| Year | Index | CI |
| ---: | ---: | ---: |
|  |  |  |
| 1994 | 1.29 | $1.12-1.49$ |
| 1995 | 0.79 | $0.68-0.92$ |
| 1996 | 1.03 | $0.88-1.19$ |
| 1997 | 0.47 | $0.36-0.61$ |
| 1998 | 0.78 | $0.72-0.84$ |
| 1999 | 0.96 | $0.89-1.04$ |
| 2000 | 0.91 | $0.82-1.01$ |
| 2001 | 0.63 | $0.58-0.69$ |
| 2002 | 0.76 | $0.70-0.82$ |
| 2003 | 0.52 | $0.47-0.57$ |
| 2004 | 0.81 | $0.68-0.97$ |
| 2005 | 0.90 | $0.82-0.99$ |
| 2006 | 1.23 | $1.10-1.38$ |
| 2007 | 1.17 | $1.08-1.27$ |
| 2008 | 1.38 | $1.26-1.51$ |
| 2009 | 1.49 | $1.33-1.67$ |
| 2010 | 1.56 | $1.39-1.77$ |
| 2011 | 1.30 | $1.18-1.44$ |
| 2012 | 1.39 | $1.26-1.52$ |
| 2013 | 1.27 | $1.18-1.38$ |
| 2014 | 1.54 | $1.42-1.68$ |

Sub-Antarctic: TCEPR tow-by-tow, target hoki

| Year | Index | CI |
| ---: | ---: | ---: |
|  |  |  |
| 1992 | 1.00 | $0.94-1.07$ |
| 1993 | 0.94 | $0.88-0.99$ |
| 1994 | 1.10 | $1.02-1.19$ |
| 1995 | 0.90 | $0.85-0.96$ |
| 1996 | 0.94 | $0.89-1.00$ |
| 1997 | 1.23 | $1.17-1.30$ |
| 1998 | 1.06 | $1.02-1.10$ |
| 1999 | 0.96 | $0.92-1.01$ |
| 2000 | 0.89 | $0.86-0.92$ |
| 2001 | 0.80 | $0.77-0.83$ |
| 2002 | 0.78 | $0.75-0.80$ |
| 2003 | 0.76 | $0.73-0.79$ |
| 2004 | 0.54 | $0.51-0.57$ |
| 2005 | 0.58 | $0.54-0.62$ |
| 2006 | 0.80 | $0.73-0.88$ |
| 2007 | 0.66 | $0.61-0.71$ |
| 2008 | 1.13 | $1.05-1.22$ |
| 2009 | 1.40 | $1.30-1.50$ |
| 2010 | 1.45 | $1.35-1.55$ |
| 2011 | 1.34 | $1.26-1.43$ |
| 2012 | 1.71 | $1.60-1.83$ |
| 2013 | 1.50 | $1.41-1.60$ |
| 2014 | 1.66 | $1.57-1.75$ |

Sub-Antarctic: Observer catch, target hoki

| Year | Index | CI |
| ---: | ---: | ---: |
| 1998 | 1.16 | $0.94-1.43$ |
| 1999 | 1.06 | $0.94-1.18$ |
| 2000 | 0.70 | $0.63-0.79$ |
| 2001 | 1.11 | $0.94-1.30$ |
| 2002 | 0.67 | $0.59-0.76$ |
| 2003 | 0.56 | $0.49-0.65$ |
| 2004 | 0.87 | $0.71-1.07$ |
| 2005 | 0.58 | $0.46-0.73$ |
| 2006 | 1.14 | $0.87-1.49$ |
| 2007 | 1.01 | $0.81-1.27$ |
| 2008 | 1.43 | $1.23-1.67$ |
| 2009 | 1.11 | $0.96-1.29$ |
| 2010 | 1.31 | $1.11-1.53$ |
| 2011 | 1.36 | $1.14-1.62$ |
| 2012 | 0.97 | $0.79-1.19$ |
| 2013 | 1.11 | $0.98-1.26$ |
| 2014 | 1.56 | $1.39-1.76$ |


[^0]:    ${ }^{1}$ Estimated catches by area from TCEPR, CELR, LCER, NCELR, and TCER adjusted pro rata to the total reported (QMR or MHR) catches (excluding HOK ET catches) in Table 2.
    ${ }^{2}$ Area undefined because of missing positions or statistical areas.

    - No catches

