More agile water allocation policy is needed to enable timely, low transition cost, adaptation to climate change. This research will integrate the use of several sophisticated computer models for simulating the effects of climate and water allocation policy on water demand, surface-water flows and groundwater levels in a representative case-study area to iteratively re-design and test water allocation policy to achieve the level of policy agility required to successfully adapt to climate change.
The silver warehou stock assessment conducted in 2023 is described. The assessment was ultimately rejected by the Fisheries New Zealand Deepwater Working Group. The data inputs and model assumptions are described. The main problems encountered, concerning stock structure, CPUE, age data, and model specifications, and their possible solutions, are discussed.
The study investigates cryptic mortality (i.e., deaths that are not observed) of seabirds in New Zealand’s trawl fisheries, separately for net captures and warp cable strikes. For net capture-related mortality, the results suggest that, on average, mortality was 2.5 times higher than when only based on observed captures. For warp strikes, estimates varied based on data sources, highlighting the need for tailored data collection due to uncertainties and sparseness in the current dataset.
The Spatially Explicit Fisheries Risk Assessment framework has recently been updated and applied to assess the fisheries risk to seabird populations within the New Zealand EEZ. In the current report, the approach is applied to seabirds globally in the southern hemisphere. Catchabilities were estimated from New Zealand captures. Then global fishing effort and species distributions were collated and used to assess the risk to seabirds from predicted fisheries captures throughout their range.